Галактики
Реферат по астрономии
Содержание
Введение 3
1. Теория дискообразности галактик И. Канта, ее развитие 3
2. Гипотеза квазаров - ядерообразующих галактик 6
3. Современные представления о галактиках 8
4. Состав Галактики 13
Заключение 17
Список литературы 19
Введение
От наивной древней картины мира, принимавшей за действительность кажущуюся одинаковую удаленность всех звезд и располагавшую их всех на поверхности хрустальной сферы, мы должны перейти к познанию истинной пространственной структуры грандиозной звездной системы.
Первое, что мы стремимся установить,— это общие контуры, общие очертания нашей звездной системы, хотя бы в самых грубых чертах. Это удалось сделать еще до того, как стало известно расстояние до ближайшей звезды. На первых порах совершенно правильно приняли для этой цели, что светимость всех звезд одинакова и что различие в их видимом блеске зависит исключительно от их расстояния до нас. Мы знаем теперь, что в действительности светимости звезд различаются прямо-таки чудовищно, но мы знаем также и то, что очень ярких звезд очень мало и что из очень слабых звезд видны лишь те, которые к нам совсем близки.
1. Теория дискообразности галактик И. Канта, ее развитие
Философ И.Кант занимался главным образом естественно научными проблемами и выдвинул ряд важных гипотез, в том числе "небулярную" космогоническую гипотезу, согласно которой возникновение и эволюция солнечной системы выводится из существования "первоначальной туманности".1 В это же время философ высказал предположение о существовании большой вселенной галактик вне нашей галактики.
В 1747 году, не защитив магистерской диссертации, Кант впервые покидает Кенигсберг. В этот период Кант написал рукопись по астрономии "Космогония или попытка объяснить происхождение мироздания, образование небесных тел и причины их движения общими законами развития материи в соответствии с теорией Ньютона". Статья была написана на конкурсную тему, предложенную Прусской академией наук, но молодой ученый не решился принять участие в конкурсе. Статья была опубликована только 1754 году после возвращения Канта в Кенигсберг. Несколько позднее, в конце лета 1754 года, Кант публикует вторую статью, посвященную также вопросам космогонии, - "Вопрос о том, стареет ли Земля с физической точки зрения". Эти две статьи были как бы прелюдией к космогоническому трактату, который был вскоре написан. Его окончательное название гласило "Всеобщая естественная история и теория неба, или попытка истолковать строение и механистическое происхождение всего мироздания, исходя из принципов Ньютона".2 Трактат вышел анонимно в 1755 году, и вскоре в одном из гамбургских изданий появилась одобрительная рецензия. Работа представляет собой своеобразную попытку сочетать пытливость натуралиста с привычными с детства догматами церкви. Приступая к изложению космогонической системы Кант озабочен одним: как согласовать ее с верой в бога. Философ убежден, что противоречия между его гипотезой и традиционным религиозными (христианским) верованием нет. Однако, очевидно некоторое сходство его взглядов с идеями древних материалистов - Демокрита и Эпикура. Как и эти философы, Кант полагал, что первоначальным состоянием природы было всеобщее рассеяние первичного вещества, атомов. Он показал, как под воздействием чисто механистических причин из первоначального хаоса материальных частиц могла образоваться наша солнечная система. Таким образом, философ отрицал за богом роль "зодчего вселенной".3 Однако, он видел в нем все же творца того первоначально рассеянного вещества, из которого (по законам механики) возникло нынешнее мироздание. Относительно Галактики Кант утверждал, что она имеет четкую форму диска.4
Дальнейшее развитие этой теории мы видим в следующем. Допустим, вы стоите на высоком холме над равниной, на которой разбросаны купами старые и молодые деревья. Они различны по высоте, высоту каждого из них вы не знаете. Но, глядя на них с холма, вы по их кажущейся величине довольно правильно можете судить о расстоянии до каждой купы деревьев. Такой путь изучения звездной Вселенной предложил Вильям Гершель. До него ограничивались наблюдением положения звезд на небе и изучением поверхности Луны и планет, а также увлекались изучением движения членов Солнечной системы.
Для выяснения контуров Вселенной Гершель стал подсчитывать число звезд разного блеска, видимых в поле зрения его телескопа в различных участках неба,— в Млечном Пути и в стороне от него. Он обнаружил, что чем слабее звезды, тем быстрее возрастает их число по мере приближения к Млечному Пути. Сам же Млечный Путь, как открыл еще Галилей, состоит из бесчисленного множества слабых звезд, сливающихся в сплошную сияющую массу, которая как кольцо опоясывает все небо.
Из этих подсчетов Гершелю стало ясно, что дальше всего наша звездная система тянется во все стороны от нас по направлению к Млечному Пути в плоскости, проходящей через его среднюю линию. Так как Млечный Путь опоясывает все небо, деля его почти пополам, то, очевидно, наша Солнечная система находится вблизи этой плоскости (вблизи галактической плоскости, как ее называют).
Однако Гершель принимал, что он своим гигантским телескопом проник до границ нашей звездной системы, состоящей из звезд, расположенных в пространстве будто бы равномерно.
Основатель Пулковской обсерватории В. Я. Струве в 1847 г. пересмотрел расчеты Гершеля и, изучив распределение звезд, доказал ошибочность подобных выводов. Струве установил, что в пространстве звезды расположены не равномерно, а сгущаются к плоскости Млечного Пути, что наше Солнце вовсе не занимает центральное положение в этой звездной системе и что наибольшие телескопы Гершеля далеко еще не достигли ее границ, а потому и о форме ее говорить преждевременно. Гершель считал, что он как бы сидит со своим телескопом в центре правильно расположенной рощи, из которой обозревает все ее опушки, а Струве доказал, что Гершель сидел где-то в огромном лесу, полном чащ и разрежений, откуда опушки леса далеко еще не видны.
Чем дальше от плоскости Млечного Пути, тем меньше там видно слабых звезд и тем на меньшее расстояние в этих направлениях тянется звездная система. В общем наша звездная система, названная Галактикой, занимает пространство, напоминающее линзу или чечевицу. Она сплющена, толще всего в середине и утончается к краям. Если бы мы могли видеть ее «сверху» или «снизу», она имела бы, грубо говоря, вид круга (не кольца!). «Сбоку» же она выглядела бы как веретено. Но каковы размеры этого «веретена»? Однородно ли расположение звезд в нем?
Ответ дает уже простое рассматривание Млечного Пути, который весь состоит как бы из нагромождения звездных облаков. Одни облака ярче, в них больше звезд (как, например, в созвездиях Стрельца и Лебедя), другие же беднее звездами.5
Видимая клочковатость Млечного Пути создается также и неравномерным распределением облаков космической пыли, темными туманностями разной плотности, поглощающими свет звезд, находящихся за ними. Но и с учетом этого наша звездная Вселенная неоднородна. Галактика состоит из звездных облаков. Солнечная система находится в одном из них, называемом «Местной системой». Самые мощные облака звезд находятся в направлении созвездия Стрельца; там Млечный Путь наиболее ярок. Он наименее ярок в противоположной части неба.
Из этого нетрудно вывести заключение, что Солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Значит, Млечный Путь — это картина, видимая нами, находящимися внутри Галактики, вблизи ее плоскости, но вдали от ее центра.
В середине Галактики находится ее ядро, которое по аналогии с ядрами других звездных систем должно иметь вид немного сплюснутого эллипсоида вращения. Мы находимся от него несколько далее 25 000 световых лет. В ядре Галактики нет горячих сверхгигантов и возбуждаемых ими к свечению диффузных газовых туманностей. Нет там и пыли, но есть в нем нейтральный водород, который, по неясной еще причине, растекается оттуда в плоскости Галактики со скоростью около 50 км/сек. Ядро, вероятно, окружено быстро вращающимся кольцом нейтрального водорода. Основное излучение ядра создается, по-видимому, оранжевыми звездами-гигантами (не сверхгигантами) спектрального класса К и множеством звезд карликов класса М. По отдельности они все не видны, и этот вывод основан на анализе суммарного цвета и спектра ядра. В общих грубых чертах форма Галактики сходна с чечевицей или с тонкой линзой, в середине которой находится более толстое и яркое ядро. Это ядро должно было бы казаться очень ярким, если бы его не скрадывало, не затмевало поглощение света в массах космической пыли.
2. Гипотеза квазаров - ядерообразующих галактик
Между галактиками могут действовать силы иной природы, чем уже знакомые нам тяготение и магнетизм.
Нет ничего невероятного в этой возможности. Вместо тяготения в мире молекул возникают молекулярные силы, а в мире еще более мелких частиц, в ядрах атомов,— ядерные силы и квантовые процессы. Несомненно, что и в области систем все возрастающих размеров на смену тяготению, в основном определяющему движение планет и двойных звезд и их формы, где-нибудь выступят новые силы или формы взаимодействия.
Если эти представления подтвердятся, то окажется, что человек проник не только в особые законы, управляющие превращениями элементарных частиц в атомах, но и в особые законы наиболее крупных среди известных нам материальных систем.
Сейчас с каждым годом открывают все новые и новые, все более слабые источники радиоизлучения, Между тем самой мощной из известных радиогалактик и даже самым мощным внегалактическим видимым источником является очень далекая галактика Лебедь А.
Самым удивительным открытием последних лет было обнаружение Сандейджем и Шмидтом (США) необычных источников радиоизлучения. После уточнения координат мощных источников радиоизлучения некоторые из них пришлось отождествить с очень слабыми точечными объектами, не отличимыми от звезд даже в самые сильные телескопы. Сомнения в правильности их отождествления отпали, когда удалось получить и расшифровать спектры этих голубоватых «звездочек» — они явно оказались не звездами. Эти объекты назвали квазизвездными («подобными звездам») источниками радиоизлучения или, сокращенно (на английском языке), квазарами. В их спектрах, как правило, видны яркие линии, которые долго не могли отождествить. Не могли их отождествить долго потому, что это были линии, находящиеся нормально в далекой ультрафиолетовой области спектра, которая в спектрах небесных тел недоступна для наблюдений из-за ее поглощения в земной атмосфере. Чудовищное красное смещение в спектре квазаров сместило эти линии в наблюдаемую область спектра. Красное смещение квазаров в большинстве случаев оказалось гораздо больше, чем у самых далеких галактик, у которых его удалось измерить.
Большинство квазаров обозначается номерами по третьему Кэмбриджскому каталогу источников радиоизлучения, обозначаемому сокращенно ЗС.
Если красное смещение в спектрах квазаров той же природы, что у галактик, то, значит расстояния до них громадны и, оказывается, что их оптическая светимость раз в 100 больше, чем у ярчайших галактик и радиогалактик! А их радиоизлучение почти такое же и не меньше, чем у радиогалактик.
В 1965 г. Сандейдж в США сделал еще одно сенсационное открытие. Он обнаружил в направлении на полюс Галактики множество очень слабых голубых звездообразных объектов, по цвету сходных с квазарами. Он получил фотографии спектров шести из них. Один спектр принадлежал обычной, сравнительно близкой звезде, два спектра были без всяких линий, а в трех случаях обнаружились яркие линии с огромными красными смещениями, как у квазаров, хотя радиоизлучение от них пока не обнаружено.
Такие объекты Сандейдж назвал «квазизвездными галактиками» или, сокращенно, квазагами и из измерения числа голубых объектов заключил, что их должно быть в сотни раз больше, чем квазаров. (Этим объектам давали и другие названия, которыми лучше не пользоваться.) Последующие исследования показали, что большинство голубых объектов у полюса Галактики — это голубоватые звезды разных типов, принадлежащие к окраинам нашей Галактики, а квазаров в действительности раз в 10 меньше, но все же много больше в единице объема, чем квазаров. Цвикки считает, что квазаги Сандейджа тождественны тем его крайне компактным галактикам, которые голубоваты и имеют яркие линии в спектре. (Речь идет о тождестве типов, а не индивидуальных объектов.)
Полагают, что, может быть, квазары являются кратковременной фазой бурного развития квазагов, отчего мощное радиоизлучение наблюдается только у немногих из них, когда мы их и регистрируем как квазары. Во всяком случае, открытие квазаров и квазагов явилось самым волнующим открытием в астрономии не только за последнее время. Ведь это какие-то совершенно новые виды небесных светил с загадочными свойствами, быть может, подводящими нас к открытию величайших законов природы.6
Заметим, что большинство ученых придерживается убеждения, что звезды и галактики возникают путем конденсации разреженного газа. Говоря о взрывах в галактиках, обычно не высказывают мнения о том, что же, собственно говоря, взрывается.
Вообще и звезды, и газ возникают при взрывах из сверхплотного вещества. Ученые считают, что в ядрах некоторых галактик существует занимающая малый объем огромная масса сверхплотного вещества, способного взрывоподобно делиться и образовывать пары и группы разбегающихся галактик. Мелкие выбросы образуют галактики-спутники. Радиогалактики, а может быть, и квазары, ученые рассматривают как галактики, ядра которых находятся в процессе катастрофического деления. Найдено немало подтверждений тому, что многие группы галактик и даже скопления их распадаются, хотя неизвестно, откуда может взяться нужная для этого колоссальная энергия. Но этот же вопрос остается в силе относительно позднее открытых радиогалактик и квазаров. Как говорится: «невероятно, но факт». Правда, пока еще в ядрах галактик не обнаружено очень больших и крайне плотных масс, но теперь эта возможность представляется менее невероятной, чем казалось раньше. Теперь тезис об огромной активности ядер галактик приобрел общее признание.
3. Современные представления о галактиках
Галактики стали предметом космогонических исследований с 20-х годов ХХ века, когда была надежно установлена их действительная природа и оказалось, что это не туманности, т.е. не облака газа и пыли, находящиеся неподалеку от нас, а огромные звездные миры, лежащие от нас на очень больших расстояниях от нас. В основе всей современной космологии лежит одна фундаментальная идея - восходящая к Ньютону идея гравитационной неустойчивости. Вещество не может оставаться однородно рассеянным в пространстве, ибо взаимное притяжение всех частиц вещества стремиться создать в нем сгущения тех или иных масштабов и масс. В ранней Вселенной гравитационная неустойчивость усиливала первоначально очень слабые нерегулярности в распределении и движении вещества и в определенную эпоху привела к возникновению сильных неоднородностей: "блинов" - протоскоплений. Границами этих слоев уплотнения служили ударные волны, на фронтах которых первоначально невращательное, безвихревое движение вещества приобретало завихренность. Распад слоев на отдельные сгущения тоже происходил, по-видимому, из-за гравитационной неустойчивости, и это дало начало протогалактикам. Многие из них оказывались быстро вращающимися благодаря завихренному состоянию вещества, из которого они формировались. Фрагментация протогалактических облаков в результате их гравитационной неустойчивости вела к возникновению первых звезд, и облака превращались в звездные системы - галактики. Те из них, которые обладали быстрым вращением, приобретали из-за этого двухкомпонентную структуру - в них формировались гало более или менее сферической формы и диск, в котором возникали спиральные рукава, где и до сих пор продолжается рождение звезд Протогалактики, у которых вращение было медленнее или вовсе отсутствовало, превращались в эллиптические или неправильные галактики. Параллельно с этим процессом происходило формирование крупномасштабной структуры Вселенной - возникали сверхскопления галактик, которые, соединяясь своими краями, образовывали подобие ячеек или пчелиных сот; их удалось распознать в последние годы.
В 20-30 гг. XX века Хаббл разработал основы структурной классификации галактик - гигантских звездных систем, согласно которой различают три класса галактик:
I. Спиральные галактики - характерны двумя сравнительно яркими ветвями, расположенными по спирали. Ветви выходят либо из яркого ядра (такие галактики обозначаются S), либо из концов светлой перемычки, пересекающей ядро (обозначаются - SB).
II. Эллиптические галактики (обозначаются Е) - имеющие форму эллипсоидов.
Представитель - кольцевая туманность в созвездии Лиры находится на расстоянии 2100 световых лет от нас и состоит из светящегося газа, окружающего центральную звезду. Эта оболочка образовалась, когда состарившаяся звезда сбросила газовые покровы и они устремились в пространство. Звезда сжалась и перешла в состояние белого карлика, по массе сравнимого с нашим солнцем, а по размеру с Землей.
III. Иррегулярные (неправильные) галактики (обозначаются I) - обладающие неправильными формами.
По степени клочковатости ветвей спиральные галактики разделяются на подтипы а, в, с. У первых из них - ветви аморфны, у вторых - несколько клочковаты, у третьих - очень клочковаты, а ядро всегда неярко и мало.
Плотность распределения звезд в пространстве растет с приближением к экваториальной плоскости спиральных галактик. Эта плоскость является плоскостью симметрии системы, и большинство звезд при своем вращении вокруг центра галактики остается вблизи нее; периоды обращения составляют 107 - 109 лет. При этом внутренние части вращаются как твердое тело, а на периферии угловая и линейная скорости обращения убывают с удалением от центра. Однако в некоторых случаях находящееся внутри ядра еще меньшее ядрышко ("керн") вращается быстрее всего. Аналогично вращаются и неправильные галактики, являющиеся также плоскими звездными системами.
Эллиптические галактики состоят из звезд второго типа населения. Вращение обнаружено лишь у наиболее сжатых из них. Космической пыли в них, как правило, нет, чем они отличаются от неправильных и особенно спиральных галактик, в которых поглощающее свет пылевое вещество имеется в большом количестве.
В спиральных галактиках поглощающее свет пылевое вещество имеется в большем количестве. Оно составляет от нескольких тысячных до сотой доли полной их массы. Вследствие концентрации пылевого вещества к экваториальной плоскости, оно образует темную полосу у галактик, повернутых к нам ребром и имеющих вид веретена.
Последующие наблюдения показали, что описанная классификация недостаточна, чтобы систематизировать все многообразие форм и свойств галактик. Так, были обнаружены галактики, занимающие в некотором смысле промежуточное положение между спиральными и эллиптическими галактиками (обозначаются Sо). Эти галактики имеют огромное центральное сгущение и окружающий его плоский диск, но спиральные ветви отсутствуют. В 60-х годах ХХ века были открыты многочисленные пальцеобразные и дисковидные галактики со всеми градациями обилия горячих звезд и пыли. Еще в 30-х годах ХХ века были открыты эллиптические карликовые галактики в созвездиях Печи и Скульптора с крайне низкой поверхностной яркостью, настолько малой, что эти, одни из ближайших к нам, галактик даже в центральной своей части с трудом видны на фоне неба. С другой стороны, в начале 60-х годов ХХ века было открыто множество далеких компактных галактик, из которых наиболее далекие по своему виду не отличимы от звезд даже в сильнейшие телескопы. От звезд они отличаются спектром, в котором видны яркие линии излучения с огромными красными смещениями, соответствующими таким большим расстояниям, на которых даже самые яркие одиночные звезды не могут быть видны. В отличие от обычных далеких галактик в которые, из-за сочетания истинного распределения энергии в их спектре и красного смещения выглядят красноватыми, наиболее компактные галактики (называющиеся также квазозвездными галактиками) имеют голубоватый цвет. Как правило, эти об'екты в сотни раз ярче обычных сверхгиганских галактик, но есть и более слабые. У многих галактик обнаружено радиоизлучение нетепловой природы, возникающее, согласно теории руссого астронома И.С.Шкловского, при торможении в магнитном поле электронов и более тяжелых заряженных частиц, движущихся со скоростями, близкими к скорости света (так называемое синхотронное излучение). Такие скорости частицы получают в результате грандиозных взрывов внутри галактик.
Компактные далекие галактики, обладающие мощным нетепловым радиоизлучением, называются N-галактиками.
Звездообразные источники с таким радиоизлучением, называются квазарами (квазозвездными радиоисточниками), а галактики обладающие мощным радиоизлучением и имеющие заметные угловые размеры, - радиогалактиками. Все эти объекты чрезвычайно далеки от нас, что затрудняет их изучение. Радиогалактики, имеющие особенно мощное нетепловое радиоизлучение, обладают преимущественно эллиптической формой, встречаются и спиральные.
Радиогалактики - это галактики, у которых ядра находятся в процессе распада. Выброшенные плотные части, продолжают дробиться, возможно, образуют новые галактики - сестры, или спутники галактик меньшей массы. При этом скорости разлета осколков могут достигать огромных значений. Исследования показали, что многие группы и даже скопления галактик распадаются : их члены неограниченно удаляются друг от друга, как если бы они все были порождены взрывом.
Галактики - сверхгиганты имеют светимости, в 10 раз превышающие светимость Солнца, квазары в среднем еше в 100 раз ярче; слабейшая же из известных галактик - карликов сравнимы с обычными шаровыми звездными скоплениями в нашей галактике. Их светимость составляет около 10 светимости солнца.
Размеры галактик весьма разнообразны и колеблются от десятков парсек до десятков тысяч парсек.
Пространство между галактиками, особенно внутри скоплений галактик, по-видимому, содержит иногда космическую пыль. Радиотелескопы не обнаруживают в них ощутимого количества нейтрального водорода, но космические лучи, пронизывают его насквозь так же, как и в электромагнитное излучение.
Галактика состоит из множества звезд различных типов, а также звездных скоплений и ассоциаций, газовых и пылевых туманностей и отдельных атомов и частиц, рассеянных в межзвездном пространстве. Большая часть их занимает об"ем линзообразной формы поперечником около 30 и толщиной около 4 килопарсек (соответственно около 100 тысяч и 12 тысяч световых лет). Меньшая часть заполняет почти сферический об"ем с радиусом около 15 килопарсек (около 50 тысяч световых лет).
Все компоненты галактики связаны в единую динамическую систему, вращающуюся вокруг малой оси симметрии. Земному наблюдателю, находящемуся внутри галактики, она представляется в виде Млечного Пути (отсюда и ее название - "Галактика") и всего множества отдельных звезд, видимых на небе.
Звезды и межзвездная газо-пылевая материя заполняют объем галактики неравномерно : наиболее сосредоточены они около плоскости, перпендикулярной оси вращения галактики и составляющейся плоскостью ее симметрии (так называемой галактической плоскостью). Вблизи линии пересечения этой плоскости с небесной сферой (галактического экватора) и виден Млечный Путь, средняя линия которого представляет собой почти большой круг, так как Солнечная система находится недалеко от этой плоскости. Млечный Путь представляет собой скопление огромного количества звезд, сливающихся в широкую белесую полосу; одноко звезды, проектирующиеся на небе рядом, удалены друг от друга в пространстве на огромные расстояния, исключающие их столкновения, несмотря на то, что они движутся с большими скоростями (десятки и сотни км/сек) в направлении полюсов галактики (ее северный полюс находится в созвездии Волос Вероники). Общее количество звезд в галактике оценивается в 100 миллиардов.
Межзвездное вещество рассеяно в пространстве также не равномерно, концентрируясь преимущественно вблизи галактической плоскости в виде глобул, отдельных облаков и туманностей (от 5 до 20 - 30 парсек в поперечнике), их комплексов или аморфных диффузных образований. Особенно мощные, относительно близкие к нам темные туманности представляются невооруженному глазу в виде темных прогалин неправильных форм на фоне полосы Млечного Пути; дефицит звезд в них является результатом поглащения света этими несветящимися пылевыми облаками. Многие межзвездые облака освещены близкими к ним звездами большой светимости и представляются в виде светлых туманностей, так как светятся либо отраженным светом (если состоят из космических пылинок) либо в результате возбуждения атомов и последующего испускания ими энергии (если туманности газовые).
Наши дни с полным основанием называют золотым веком астрофизики - замечательные и чаще всего неожиданные открытия в мире звезд следуют сейчас одно за другим. Солнечная система стала прследнее время предметом прямых экспериментальных, а не только наблюдательных исследований. Полеты межпланетных космических станций, орбитальных лабораторий, экспедиции на Луну принесли множество новых конкретных знаний о Земле, околоземном пространстве, планетах, Солнце. Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали разгадать тайны Галактик, разбросанных в беспредельных просторах Вселенной. Приходится только поражаться, как быстро наука выдвигает различные гипотезы и тут же их опровергает. Однако астрономия не стоит на месте : появляются новые способы наблюдения, модернизируются старые. С изобретением радиотелескопов, например, астрономы могут 'заглянуть' на расстояния, которые еще в 40-x. годах ХХ столетия казались недоступными. Однако надо себе ясно представить огромную величину этого пути и те колоссальные трудности, с которыми еще предстоит встретится на пути к звездам.
4. Состав Галактики
Нашу галактику называют просто Галактикой. Она имеет средние размеры и состоит примерно из 150 − 200 млрд звезд, включая Млечный путь (древнее название полосы звезд на небе, отмечающих плоскость нашей Галактики), и представляет собой огромный диск, который состоит из звезд и звездных скоплений, вращающихся в пространстве, подобно гигантскому колесу. Звезды, входящие в Галактику, описывают вокруг ее центра окружности разного диаметра (рис. 1).
Рис. 1 Схема Галактики (крестиком обозначено положение Солнца): а) вид сверху; б) вид сбоку (черные точки изображают шаровые скопления)
Звёзды и межзвёздная газопылевая материя заполняют объём галактики неравномерно: наиболее сосредоточены они около плоскости, перпендикулярной оси вращения галактики и являющейся плоскостью её симметрии (т. н. галактической плоскостью). Вблизи линии пересечения этой плоскости с небесной сферой (галактического экватора) и виден Млечный Путь, средняя линия которого представляет собой почти большой круг, т. к. Солнечная система находится недалеко от этой плоскости. Млечный Путь представляет собой скопление огромного количества звёзд, сливающихся в широкую белёсую полосу; однако звёзды, проектирующиеся на небе рядом, удалены друг от друга в пространстве на огромные расстояния, исключающие их столкновения, несмотря на то, что они движутся с большими скоростями (десятки и сотни км/сек) в разных направлениях. Наименьшая плотность распределения звёзд в пространстве (пространственная плотность) наблюдается в направлении полюсов галактики (её северный полюс находится в созвездии Волос Вероники). Общее количество звёзд в галактике оценивается в 100 млрд.
Межзвёздное вещество рассеяно в пространстве также неравномерно, концентрируясь преимущественно вблизи галактической плоскости в виде глобул, отдельных облаков и туманностей (от 5 до 20—30 парсек в поперечнике), их комплексов или аморфных диффузных образований. Особенно мощные, относительно близкие к нам тёмные туманности представляются невооруженному глазу в виде тёмных прогалин неправильных форм на фоне полосы Млечного Пути; дефицит звёзд в них является результатом поглощения света этими несветящимися пылевыми облаками. Многие межзвёздные облака освещены близкими к ним звёздами большой светимости и представляются в виде светлых туманностей, т. к. светятся либо отражённым светом (если состоят из космических пылинок), либо в результате возбуждения атомов и последующего испускания ими энергии (если туманности газовые).
Полная масса галактики, включая все звёзды и межзвёздное вещество, оценивается в 1011 масс Солнца, т. е. около 1044 г. Как показывают результаты детальных исследований, строение галактики схоже со строением большой галактики в созвездии Андромеды, галактики в созвездии Волос Вероники и др. Однако, находясь внутри галактики, мы не можем видеть всю её структуру в целом, что затрудняет её изучение.
Галактика имеет резко выраженное подсистемное строение; различают три подсистемы: плоскую, промежуточную и сферическую. Плоская подсистема характеризуется наличием молодых горячих звёзд, переменных звёзд типа долгопериодических цефеид, звёздных ассоциаций, рассеянных звёздных скоплений и газо-пылевого вещества. Все они сосредоточены у галактической плоскости в форме экваториального диска (толщиной 1/20 поперечника галактики). Средний возраст звёздного населения диска около 3 млрд. лет. Слабее концентрируются к плоскости галактики жёлтые и красные звёзды-карлики и звёзды-гиганты, занимающие объём в виде сильно сплюснутого эллипсоида. Все субкарлики, жёлтые и красные гиганты, переменные звёзды типа короткопериодических цефеид и шаровые звёздные скопления образуют сферическую составляющую (иногда называется гало), заполняя сферический объём (со средним диаметром, превышающим 30 тыс. парсек, т. е. 100 тыс. световых лет) с резким падением плотности в направлении от центральных областей к периферии. Её возраст более 5 млрд. лет. Объекты различных составляющих отличаются друг от друга также и скоростями движения, и химическим составом. Звёзды плоской составляющей имеют большие скорости движения относительно центра галактики и они богаче металлами. Это указывает на то, что звёзды разных типов, относящиеся к разным подсистемам, формировались при различных начальных условиях и в различных областях пространства, занимаемого галактическим веществом. Вся галактическая система погружена в обширную газовую массу, которую иногда называют галактической короной. Из центральной области галактики распространяются вдоль галактической плоскости спиральные ветви, которые, огибая ядро и разветвляясь, постепенно расширяются, теряя яркость. Спиральной структурой, оказавшейся весьма характерным свойством галактик на некотором этапе их эволюции, галактика сходна с множеством др. звёздных систем того же типа, что и она, имеющих такой же звёздный состав. В развитии спиральной структуры, по-видимому, играют роль гравитационные силы и магнитогидродинамические явления, при этом на неё влияют и особенности вращения галактики. Вдоль спиральных ветвей происходит звездообразование и они населены наиболее молодыми галактическими объектами.
Вопросы эволюции галактики в целом или отдельных её составных элементов имеют большое мировоззренческое значение. В течение долгого времени господствовал взгляд об одновременном образовании всех звёзд и др. объектов галактики. Такой взгляд связывался с признанием единовременного происхождения всех галактик в одной точке Вселенной и их последующего «разбегания» в разные стороны от неё. Однако детальные исследования, основанные на многочисленных наблюдениях, привели к заключению (советский астроном В. А. Амбарцумян), что процесс звёздообразования продолжается и в настоящую эпоху.
Проблема происхождения и развития звёзд в галактике является фундаментальной проблемой. Существуют две главные, но противоположные точки зрения на формирование звёзд. Согласно первой из них, звёзды образуются из газовой материи, в значительном количестве рассеянной в галактике и наблюдаемой оптическими и радиоастрономическими методами. Газовое вещество там, где его масса и плотность достигают достаточно большой величины, сжимается и уплотняется под действием собственного притяжения, образуя холодный шар. В процессе дальнейшего сжатия температура внутри него, однако, повышается до нескольких млн. градусов; этого достаточно для возникновения термоядерных реакций, которые вместе с процессами излучения и обусловливают дальнейшую эволюцию этого шара —звезды. Согласно второй точке зрения, звёзды образуются из некоторого сверхплотного вещества. Сверхплотное вещество такого рода ещё не обнаружено и его свойства неизвестны, но то обстоятельство, что в наблюдаемой Вселенной процессы истечения масс из звёзд, деления и распада систем наблюдаются во многих случаях, процессы же образования звёзд из межзвёздного вещества не наблюдаются, говорит в пользу второй точки зрения.
Предполагается, что галактика в целом развилась в процессе конденсации первичного газового облака, богатого водородом; образовавшиеся при этом звёзды в нашу эпоху наблюдаются как звёзды сферической составляющей, бедные металлами и имеющие наибольший возраст. Первичное газовое облако, продолжая сжиматься под действием гравитационных сил, обогащалось металлами за счёт выбрасывания вещества из недр ранее образовавшихся звёзд, в которых уже в течение многих сотен млн. лет шли внутриядерные реакции и водород превращался в более тяжёлые элементы. Поэтому более позднее «поколение» звёзд, образовавшее диск галактики, оказалось более богатым металлами. Эта концепция объясняет наблюдаемое распределение скоростей звёзд и расслоение последних по подсистемам. Тем не менее в изложенной картине остаётся немало противоречий.
Заключение
Еще задолго до того, как были установлены огромные расстояния до галактик, человечество постоянно задавалось вопросом: «есть ли граница мира и если есть, то что за ней?». Учение о мире как целом составляет предмет космологии. По этому поводу вправе высказываться и философия, и математика, в которой трактуется понятие бесконечности, и астрономия, изучающая конкретные небесные тела. Вопрос этот оказывается очень сложным и многогранным. Философия диалектического материализма утверждает, что материя и ее движение вечны, хотя и меняют форму. В бесконечном многообразии явлений в природе, явлений всегда материальных, теперь едва ли сомневается кто-либо из естествоиспытателей, хотя защитники идеализма и пытаются всякое новое, еще не понятное явление природы истолковать идеалистически. В этом они терпят, однако, неудачу с каждым продвижением науки вперед. Сейчас, по-видимому, мало кто из ученых допускает, чтобы Вселенная имела границу — «стенку», в которую можно упереться. Однако вопрос о том, конечна ли Вселенная и каковы свойства пространства, в котором мы живем, можно попытаться проверить путем наблюдений в Космосе.7
В школе изучают евклидово пространство, в котором две прямые никогда не пересекаются. Но наш великий математик Лобачевский показал, что мыслимо пространство с другими свойствами. Позднее Эйнштейн доказал в своей теории относительности, что реальное физическое, а не абстрактное пространство, заполненное материей, может иметь кривизну, обусловленную существованием материи. Советский ученый А. А. Фридман, а за ним другие ученые математически разработали модели вселенных, опирающихся на теорию относительности. Таких моделей создано немало и большинство их — это модели безграничной, но конечной Вселенной. Сочетание безграничности и в то же время конечности поясняют обычно на грубом примере шара. У него нет границ для двухмерного существа, могущего перемещаться только по поверхности шара. В то же время размер поверхности шара конечен. Размеры шара могут увеличиваться, уменьшаться или пульсировать, оставаясь конечными.
Свойства конечной Вселенной теоретически зависят от средней плотности вещества в ней, от степени однородности этой плотности от места к месту. Обращаясь к наблюдения, мы можем изучать пока только часть Метагалактики, которую часто и неосновательно отождествляют со Вселенной в целом.8
Мы узнали, что галактики удаляются друг от друга, судя по красному смещению в их спектрах, и тем быстрее, чем они друг от друга дальше. Мы имеем некоторые сведения о массах галактик и об их распределении в пространстве. Очевидно, Метагалактика расширяется, но какая модель Вселенной больше всего на это похожа? Оказывается, что это можно выяснить, если установить связь величины красного смещения с расстоянием до галактики, если его определить другим независимым путем (а не по величине того же красного смещения. Для той же цели может служить и распределение очень далеких галактик (или источников радиоизлучения) в пространстве.9 Расстояние до скоплений галактик, как мы говорили, можно определить по видимому блеску ярчайших галактик в них. Результаты наблюдений сравниваются с выводами теории для разных моделей Вселенной. Современное наше проникновение в глубину Метагалактики и точность наших данных еще недостаточны для уверенного, окончательного вывода. Все же большинство ученых склоняется сейчас к выводу, что Метагалактика конечна и расширяется с замедлением, которое создает взаимное тяготение. Вероятно, существует пульсация если не Вселенной, то Метагалактики, и когда-либо расширение сменится сжатием.
Из факта расширения Метагалактики можно сделать вывод, что несколько миллиардов лет назад ее объем был так мал, что галактики не могли существовать как отдельные объекты. Это, конечно, не означает, что тогда и было «сотворение мира», как хотят заключить идеалисты. Просто тогда вещество существовало в иной форме. Возможности превращения вещества безграничны и оно не всегда было и не всегда будет существовать в тех видах, в каких мы наблюдаем его вокруг себя сейчас.
Список литературы
Гулыга А.В. Кант. - 2-е изд. - М., Мол. гвардия, 1981.
Данлоп С. Азбука звездного неба. М., “Мир”, 1990.
ЗасоваА.В. «Космология и наблюдения». М., 1985.
Зельманова А.Л. «Метагалактика и Вселенная». М., 1982.
История астрономии: Пер. с англ. / А. Панненкук.—М.: Наука, 1966.—592 с.: ил.
Кант И. Сочинения в шести томах. М., 1963 - 1966.,Т.2.
Киппенхан р. 100 миллиардов солнц. М., “Мир”, 1990.
Нарский И.С. Кант. М., 1976.
О системах галактики / М. Б. Сизов.—М.: Прометей, 1992.—16 с.
Происхождение и эволюция Земли и других планет Солнечной системы / А. А. Маракушев.—М.: Наука, 1992.—204 с.
Физическая модель Вселенной / Б. П. Иванов.—СПб.: Политехника, 2000.—312 с.
Эволюция солнечной системы: Пер. с англ. / Х. Альвен, Г. Аррениус.—М.: Мир, 1979.—511 с.
Энциклопедический словарь астронома., М., “Педагогика” , 1980.
1 Кант И. Сочинения в шести томах. М., 1963 - 1966.,Т.2, стр.256.
2 Нарский И.С. Кант. М., 1976.,стр.97-98.
3 Гулыга А.В. Кант. - 2-е изд. - М., Мол. гвардия, 1981.,стр.44.
4 Киппенхан р. 100 миллиардов солнц. Москва., “Мир”, 1990 г.,стр.311.
5 Журнал “Земля и Вселенная” 1/92 ; 1/91 ; 5/92 .
6 Энциклопедический словарь астронома., Москва, “Педагогика” , 1980 г., стр.347.
7 Данлоп С. Азбука звездного неба., Москва, “Мир”, 1990 г.,стр.56-57.
8 Киппенхан р. 100 миллиардов солнц. Москва., “Мир”, 1990 г.,стр.112.
9 ЗасоваА.В. «Космология и наблюдения».,Москва, в № 4 журнала «Земля и Вселенная» за 1985 г., стр.24.
Нравится материал? Поддержи автора!
Ещё документы из категории авиация, космонавтика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ