Атомные электрические станции состояние, проблемы, перспективы строительства в Республике Белар



МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»



Кафедра технологии важнейших отраслей промышленности









РЕФЕРАТ


по дисциплине: Основы энергосбережения

на тему: Атомные электрические станции: состояние, проблемы, перспективы строительства в Республике Беларусь.



















Студентка

ФМЭО, 2 курс, ДАЗ-3 (подпись) Д. С. Багринцева

(дата)



Проверила (подпись) М. В. Михадюк

(дата)




МИНСК 2010


Энергетическая отрасль – одна из ведущих в Беларуси. От ее стабильной и эффективной работы, обеспечения надежного и бесперебойного энергоснабжения зависит работа всех других отраслей народного хозяйства республики, комфорт и благополучие граждан.

Проблемы и перспективы развития



1. Общее состояние энергетики Беларуси




В Беларуси начато создание новой отрасли - ядерной энергетики. Какие экономические выгоды принесет республике реализация этого проекта?
В Беларуси планируется построить атомную электростанцию в составе двух энергоблоков общей мощностью около 2,4 тыс. МВт с вводом в эксплуатацию первого энергоблока в 2016 году и второго – в 2018 году. Строительство АЭС позволит укрепить энергетическую безопасность страны, снизить себестоимость производства электроэнергии, а, следовательно, и рост тарифов на ее отпуск. Уменьшатся выбросы парниковых газов, будут выведены из работы устаревшие и малоэффективные генерирующие мощности. Расчеты, выполненные учеными НАН Беларуси, показали, что с пуском АЭС себестоимость электроэнергии в целом по энергосистеме снизится примерно на 20%, при этом в расчетах не принималось повышение цен на газ. Годовой объем закупок природного газа сократится на 4-5 млрд. куб.м. Как показывает анализ, топливная составляющая в себестоимости производства электрической энергии на АЭС составляет в мире от 12 до 25%, в то время как на обычных электростанциях - около 70%. В абсолютных ценах топливная составляющая на АЭС колеблется от 0,2 до 1 цента на 1 кВт.ч, на обычных тепловых электростанциях у нас в стране в 2009 году эта величина составила 5,63 цента на 1 кВт.ч. Таким образом, рост цен на урановое сырье (оно в топливной составляющей 8-10%) не приведет к значительному росту тарифов, как при росте цен на органическое топливо. Следует также отметить, что строительство атомной электростанции будет способствовать экономическому и социальному развитию региона размещения АЭС. Выполнение заказов для АЭС позволит поднять технический, технологический уровень промышленных предприятий республики и повысить квалификацию кадров. Опыт, приобретенный при строительстве АЭС, в перспективе позволит использовать промышленный и кадровый потенциал страны при возведении объектов ядерной энергетики как в республике, так и за рубежом.
Инвестиции в развитие отечественной энергетики постоянно растут. За 2006-2010 годы на реконструкцию и строительство объектов энергосистемы направлено $2762 млн. В 2011 годах на модернизацию основных производственных фондов белорусской энергосистемы (без учета строительства АЭС) планируется направлять ежегодно порядка $610 млн. Не мало важно привлечение иностранных инвестиций.


В настоящее время в рамках реализации Концепции энергетической безопасности Министерство энергетики разрабатывает Государственную программу модернизации основных производственных фондов белорусской энергетической системы на 2011–2015 годы. Этот период предшествует главному событию в белорусской энергетике – вводу в эксплуатацию в 2016 и в 2018 году энергоблоков атомной электростанции. Для обеспечения надежной работы энергосистемы после ввода АЭС необходима уверенность в работоспособности существующего оборудования и наличие необходимого и достаточного резерва мощности, который будет задействован на время регламентных установок ядерных энергоблоков.

Для этого в период с 2011 по 2015 годы в целях повышения надежности и экономичности работы существующих энергоисточников планируется модернизация и реконструкция оборудования с повышением эффективности. Такеже получит развитие системообразующая сеть белорусской энергосистемы, а также межгосударственные линии электропередачи. Планируется к пуску первого блока белоруской АЭС построить 400 км линий электропередачи напряжением 330 кВ и еще 200 км – к вводу второго.


Ввод в перспективе запланированных мощностей повысит эффективность работы энергосистемы и значительно сократится износ основных фондов. Будет полностью выведено из эксплуатации неэффективное оборудование, создан необходимый резерв мощности  для полного и надежного электроснабжения потребителей. Кроме того, будет обеспечена возможность перехода энергосистемы на самобаланс по электрической мощности и энергии и созданы предпосылки для экспорта электроэнергии.


Для осуществления стабильного импорта (обмена) электроэнергии мы планируем усиление внешних связей с соседними государствами, что предполагает создание технической возможности для увеличения в перспективе экспорта электроэнергии в сопредельные государства и транзита электроэнергии через территорию республики, а также диверсификации поставок электроэнергии в нашу страну.























ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ АЭС В БЕЛОРУССКОЙ ЭНЕРГОСИСТЕМЕ

Сооружение Белорусской АЭС с вводом первого энергоблока 1000 МВт в 2016 году и второго 1000 МВт в 2018 году по доле мощности АЭС приблизит Белорусскую энергосистему к уровню энергосистем таких стран как США, Германия, Англия, Япония, Финляндия, опередив Россию, Китай, Индию и другие страны.

Это обусловливает необходимость глубокой и всесторонней оценки влияния АЭС на все сферы энергетического хозяйства и, прежде всего, на загрузку и режим работы традиционных электростанций Белорусской энергосистемы. Объективность и качество такой оценки во многом зависят от правильного определения технических возможностей энергооборудования и методологии оценки получаемого совокупного экономического эффекта.

Положение с ценами на энергоносители на мировом рынке к настоящему времени сложилось таким образом, что покупка ядерного горючего обходится во много раз дешевле, чем эквивалентного количества нефти, природного газа и других видов топлива. Есть основание ожидать, что в будущем этот разрыв в ценах на энергоресурсы будет возрастать. В таких условиях АЭС являются наименее затратными производителями энергии, что привлекает многие страны к их сооружению.

Наиболее характерным, можно сказать, типичным побудительным мотивом к строительству АЭС служит рост потребительского спроса на электроэнергию при ограниченных возможностях его удовлетворения за счёт действующих традиционных электростанций. В этом случае мощность вводимой в эксплуатацию АЭС расходуется на покрытие прироста электрической нагрузки и на восполнение дефицита мощности в энергосистеме. В такой ситуации использование АЭС оказывает умеренное и не столь болезненное влияние на загрузку и режим работы существующих электростанций, не ухудшает серьёзным образом их технико-экономические показатели. Чтобы максимально снизить такое влияние, применяются способы регулирования мощности в энергосистеме с участием самих АЭС. Для этого используется техническая возможность 10-ти процентной ежесуточной разгрузки атомных энергоблоков, а также сооружаются сопутствующие АЭС специальные пиковые энергоустановки в виде пиковых ГТУ и напорно-аккумулирующих гидроэлектростанций (НАГЭС).

Как показывает анализ, таких условий для сооружения АЭС в Белорусской энергосистеме на ближайшие 10-15 лет нет. Согласно прогнозным расчётам, максимальная электрическая нагрузка энергосистемы в период с 2000 года по 2018 год (год выхода АЭС на проектную мощность в 2 млн. кВт) увеличится в 1,3 раза, будет прирастать со средним ежегодным темпом в 1,6% и в 2018 г. достигнет 7714 МВт. Если учесть, что в бытность СССР естественный ежегодный прирост электрических нагрузок в энергосистемах оценивался в 4%, то следует признать, что полученный прирост нагрузки для Белорусской энергосистемы является весьма низким, недостаточным для ускоренного освоения мощности атомных энергоблоков.

В то же время в течение всего рассматриваемого периода в Белорусской энергосистеме не проявляется дефицит мощности. Установленная электрическая мощность ныне действующих электростанций, которая на сегодняшний день составляет 7888 МВт и при осуществлении всех намеченных мероприятий по их реконструкции и модернизации к 2018 году может быть доведена до 8987 МВт, в течение всего предстоящего десятилетия будет превышать ожидаемый максимум электрической нагрузки в энергосистеме не менее как на 15%.

Это означает, что истинный побудительный мотив, определивший принятие решения о строительстве Белорусской АЭС, а равно и новой КЭС на каменном угле, лежит не в традиционной плоскости электроэнергетического баланса энергосистемы, а в плоскости более общих и более значимых стратегических интересов нашего государства к вопросу будущего энергообеспечения. Основную роль в этом решении сыграло острое желание избавиться от исторически сложившегося и ставшего экономически ущербным моноресурсного топливно-энергетического баланса, в котором уже долгое время доминирует растущий в цене российский природный газ, занимая долю, близкую к 80%, и тем самым повысить энергетическую безопасность страны при одновременном снижении затрат на производство электроэнергии.

Выходящая за рамки традиционности, особенность побудительного мотива сооружения Белорусской АЭС и угольной КЭС обусловливает и иное, более сильное влияние этих электростанций на важнейшие сферы энергетического хозяйства страны, таких как ТЭБ, системы теплоснабжения и особенно на загрузку и режим работы действующих электростанций энергосистемы.

Влияние в ТЭБ проявляется в сокращении расхода природного газа в размере не менее 6 млн. т у.т. в год, что составляет около 27% современного его потребления; в суточном и годовом режимах потребления газа в сторону большей неравномерности, что существенно повышает роль суточных и сезонных газохранилищ; в распределении потоков природного газа по территории республики.

Влияние на системы теплоснабжения в основном сказывается на экономическом соотношении комбинированной и раздельной схемы теплоэлек-троснабжения. Войдя в эксплуатацию, АЭС и угольная КЭС становятся замыкающими в энергосистеме по производству электроэнергии. Имея меньшие себестоимости этого производства, по сравнению с ТЭЦ, работающими на природном газе, они повышают экономическую эффективность раздельной схемы до уровня, когда она становится конкурентноспособной по отношению к комбинированной, открывая тем самым дорогу к более широкому использованию газовых котельных. Кроме того, создаются более благоприятные экономические условия для непосредственного применения электроэнергии в теплоснабжении, например, в теплонасосных схемах.

Влияние АЭС и угольной КЭС на загрузку и режим работы действующих электростанций в Белорусской энергосистеме столь значительно и многообразно, что необходимы комплексные исследования и оптимизация с применением математического моделирования и вычислительной техники.

Чтобы предметно рассмотреть этот вопрос в ограниченных рамках реферата, следует кратко проанализировать покрытие суточных графиков электрической нагрузки энергосистемы на перспективу 2018 года, когда в эксплуатацию будут введены два энергоблока на АЭС по 1000 МВт каждый и два энергоблока на угольной КЭС по 200 МВт. Общая установленная мощность обеих электростанций составляет 2400 МВт. В каком режиме им работать — в базовом или манёвренном — определяется самой идеей их создания: максимальное замещение расхода природного газа в энергосистеме и наибольшее снижение затрат на производство электроэнергии. Белорусская АЭС, и угольная КЭС должны использоваться в базовой зоне суточных графиков электрической нагрузки энергосистемы и, по возможности, работать с полной загрузкой в течение года. Весь вопрос состоит в том: в состоянии ли Белорусская энергосистема, при ожидаемых суточных графиках электрической нагрузки, обеспечить им такое использование, и как при этом изменится загрузка и режим работы всех других электростанций энергосистемы, и какими будут внешние электроэнергетические связи республики.

Плотность и форма суточных графиков нагрузок в значительной мере зависят от соотношения в развитии производств разной электроёмкости и доли нагрузки жилищно-коммунального сектора. Оба этих показателя имеют на перспективу вероятностный характер. В условиях, когда идёт жёсткая борьба за снижение энергоёмкости внутреннего валового продукта (ВВП), с одной стороны, и за расширение экспорта отечественной продукции, с другой, имеет смысл задавать суточные графики нагрузок вариантно и вариантно решать вопрос их покрытия.

Суточные графики на 2018 год из работы Объединённого института энергетических исследований - Сосны НАН Республики Беларусь представлены в приложении, графики для зимнего и летнего рабочего и выходного дня представлены в таблице 1 и на рис. 1, а их развёрнутая характеристика — в таблице 2. Максимальные значения полной, базовой и полупиковой нагрузки приходятся на зимний рабочий день и только максимум пиковой нагрузки характерен для зимнего выходного дня. В летний период нагрузка рабочего и выходного дня составляет три четверти от соответствующей зимней.

Влияние АЭС и угольной КЭС на загрузку и режим работы действующих электростанций нагляднее всего видно из баланса электрических нагрузок и рабочей мощности электростанций, дифференцированно по базовой, полупиковой и пиковой зонам суточных графиков нагрузок.

Суммарная рабочая мощность всех электростанций энергосистемы на 2018 год (табл. 3) определится по установленной за минусом резерва мощности, принимаемого в размере 10%, и недоиспользования электрической мощности на ТЭЦ из-за недогрузки ТЭЦ по теплоте, оцениваемого в 15%. Таким образом, суммарная рабочая мощность составит 9728 мВт с превышением максимальной электрической нагрузки энергосистемы на 2014 МВт, т.е. более чем на 20%. Это означает, что в Белорусской энергосистеме при вводе в эксплуатацию АЭС и угольной КЭС образуется весьма значительный избыток мощности, для реализации которого внутри республики, при темпах ежегодного прироста максимальной электрической нагрузки в 1,6%, потребуется более 16 лет.

Участие различных категорий электростанций в покрытии максимальной электрической нагрузки зимнего рабочего дня показано в таблице 4. По зонам суточного графика нагрузки это участие выглядит следующим образом.

Базовая нагрузка (4800 МВт) на 50% покрывается введёнными в эксплуатацию АЭС и угольной КЭС, на 43% — существующими ТЭЦ и только на 7% — существующими КЭС, работающими на природном газе. Около 52% рабочей мощности ТЭЦ используется в базовой зоне графика нагрузки с выработкой электроэнергии по теплофикационному циклу, а 48% должно быть переведено в манёвренный режим для покрытия полупиковой нагрузки. Присутствие существующих КЭС в базовой зоне суточного графика ограничивается техническим минимумом мощности участвующих в покрытии нагрузки конденсационных энергоблоков (около 30% от номинальной), а вся остальная мощность этих энергоблоков должна использоваться в манёвренном режиме, при этом лишь 25% для покрытия полупиковой нагрузки и 45% — пиковой.

Полупиковая нагрузка (2177 МВт) в основном, на 87%, покрывается рабочей мощностью действующих ТЭЦ, используемых в манёвренном режиме, и только на 13% — за счёт действующих КЭС.

Пиковая нагрузка (737 МВт) покрывается на 27% введёнными в эксплуатацию новыми пиковыми ГТУ, на 7% — существующими ГЭС и на 66% — за счёт рабочей мощности действующих КЭС, приспособленных для покрытия пиковой нагрузки.

Этого примера достаточно, чтобы назвать основные проблемы, которые придётся решать в энергосистеме в связи с переходом на частичное использование ядерного горючего и каменного угля в целях сокращения расхода природного газа.

Во-первых, вопрос формирования и использования избыточной мощности, который надо решать заблаговременно с учётом развивающихся энергетических связей с соседними странами, а также при планировании дальнейшего развития отечественных производительных сил.

Во-вторых, становится совершенно очевидным, что без использования манёвренных возможностей ТЭЦ в покрытии суточных графиков нагрузок не обойтись. Это должно явиться одним из важнейших технических мероприятий в энергосистеме на ближайшие годы с таким расчётом, чтобы при вводе в эксплуатацию АЭС и КЭС на угле, действующие ТЭЦ смогли взять на себя основную наибольшую часть полупиковой нагрузки.

В-третьих, в условиях избытка электрогенерирующей мощности нет рациональной целесообразности идти по пути строительства специальных пиковых гидроаккумулирующих электростанций, требующих значительных капвложений и потенциально увеличивающих этот избыток. Имеет смысл изыскать возможность получения пиковой мощности на существующих КЭС и ТЭЦ, используя системы аккумулирования теплоты и электроэнергии и другие технические решения.













Вывод




Сооружение Белорусской АЭС с вводом первого энергоблока 1000 МВт в 2016 году и второго 1000 МВт в 2018 году по доле мощности АЭС приблизит Белорусскую энергосистему к уровню энергосистем таких стран как США, Германия, Англия, Япония, Финляндия, опередив Россию, Китай, Индию и другие страны.



















Часы суток

0

1

2

3

4

5

6

7

8

9

10

11

Зима

рабочий день

5180

5161

5007

5010

4800

4922

5495

6442

7123

7371

7434

7238

выходной день

5574

6328

5059

4907

4873

4751

4998

5242

5144

5302

5457

5469

Лето

рабочий день

4133

3948

3756

3581

3472

3718

4066

4670

5277

5691

5833

5744

выходной день

4413

4021

3987

3714

3681

3444

3726

3958

4004

4109

4265

4491




Часы суток

12

13

14

15

16

17

18

19

20

21

22

23

Зима

рабочий день

7068

7172

7107

6977

7283

7673

7714

7666

7377

7227

6864

6148

выходной день

5528

5357

5226

5329

5487

6047

6295

6233

6114

5917

5658

5577

Лето

рабочий день

5611

5735

5759

5544

5333

5299

5125

4907

5155

5107

5211

5109

выходной день

4389

4391

4248

4466

4489

4424

4458

4389

4369

4506

4747

4754

Таблица 1. Суточные графики электрических нагрузок Белорусской энергосистемы на 2018 год
































а) Рабочий день

Часы суток, ч

б) Выходной день

Часы суток, ч


Рис. 1. Перспективные суточные графики электрических нагрузок Белорусской энергосистемы на 2018 год





Наименование нагрузок

Зима

Лето

рабочий день

выходной день

рабочий день

выходной день

1. Характерные величины нагрузок:





- максимальная

7714

6295

5833

4754

- минимальная ночная

4800

4751

3472

3444

- минимальная дневная

6977

5226

4907

4248

2. Деление нагрузок по зонам суточного графика:





- базовая, тыс. кВт / %

4800 62,2

4751 75,5

3472 59,5

3444 72,4

- переменная, тыс. кВт / %

2914 37,8

1544 24,5

2361 40,5

1310 27,6

в том числе:





- полупиковая, тыс. кВт / %

2177 28,2

475

7,5

1435

24,6

804 16,9

- пиковая, тыс. кВт / %

737 9,6

1069 17,0

926 15,9

506 10,7

3. Доля в переменной нагрузке:





- полупиковой, %

74,7

30,7

60,8

61,3

- пиковой, %

25,3

69,3

39,2

38,7

4. Характеристики суточных графиков относительные:





- плотность графика

0,851

0,866

0,841

0,889

- соотношение минимальной суточной нагрузки к максимальной

0.622

0,755

0,595

0,724

Таблица 2. Характеристика суточных графиков электрических нагрузок Белорусской энергосистемы на 2018 год































Существующие электростанции

с учётом реконструкции и модернизации:

МВт

%

- крупные КЭС, включая Минскую ТЭЦ-5

4270

36,85

- крупные ТЭЦ

3831

33,06

- ТЭЦ менее 50 МВт

214

1,84

- мини-ТЭЦ и блок-станции

620

5,35

-ГЭС

52

0,45

Всего существующих

8987

77,56

Электростанции для расширения ОЭС:



- Белорусская АЭС

2000

17,26

- новая КЭС на угле

400

3,45

- пиковые ГТУ

200

1,73

Всего расширения

2600

22,44

Итого по энергосистеме на 2018 год

11587

100

Таблица 3. Прогнозируемые установленные мощности электростанций Белорусской энергосистемы к 2018 году

Нравится материал? Поддержи автора!

Ещё документы из категории экология:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ