Расчет МДП-транзистора с индуцированным каналом
Оглавление
1. Основные сведения
2. Расчет МДП-транзистора с индуцированным каналом
Выводы
1. Основные сведения
Упрощенная структура МДП-транзистора с n-каналом, сформированного на подложке p-типа электропроводности, показана на рисунке 1.
Транзистор состоит из МДП-структуры, двух сильнолегированных областей противоположного типа электропроводности по сравнению с электропроводностью подложки и электродов истока и стока. При напряжении на затворе, превышающем пороговое напряжение (), в приповерхностной области полупроводника под затвором образуется индуцированный электрическим полем затвора инверсный слой, соединяющий области истока и стока. Если подано напряжение между стоком и истоком, то по инверсному слою, как по каналу, движутся основные для канала носители заряда, т.е. проходит ток стока.
2. Расчет МДП-транзистора с индуцированным каналом
I. Выбор длины канала и диэлектрика под затвором транзистора:
а) выбор диэлектрика под затвором:
В качестве диэлектрика для GaAs выбираем Si3N4, т.к. он обладает довольно высокой электрической прочностью, а также образует сравнительно небольшую плотность поверхностных состояний.
б) определение толщины диэлектрика под затвором:
Слой диэлектрика под затвором желательно делать тоньше, чтобы уменьшить пороговое напряжение и повысить крутизну передаточной характеристики. С учётом запаса прочности имеем выражение:
В, => нм
в) выбор длины канала:
Минимальную длину канала длинноканального транзистора можно определить из соотношения:
,
где - глубина залегания p-n-переходов истока и стока, - толщина слоя диэлектрика под затвором, и - толщины p-n-переходов истока и стока, - коэффициент ( мкм-1/3).
Толщину p-n-переходов истока и стока рассчитаем в приближении резкого несимметричного p-n-перехода:
,
где В, , ,
В
мкм
мкм
мкм
Результаты вычислений сведем в таблицу:
, мкм
, см-3
, см-3
, см-3
, В
, мкм
, мкм
, мкм
, мкм
0,16
107
1016
1017
1,102
1,6
0,36
0,2
4,29
Данный выбор концентраций обусловлен тем, что для вырождения полупроводника должны выполняться условия см-3 и см-3. С другой стороны при уменьшении или при увеличении происходит резкое увеличение длины канала (более 5 мкм). Поэтому и были выбраны такие значения концентраций. Глубина перехода выбрана исходя из тех же соображений.
II. Выбор удельного сопротивления подложки:
Удельное сопротивление полупроводника определяется концентрацией введенных в него примесей. В нашем случае см-3 => Ом·см. Удельное сопротивление подложки определяет ряд важных параметров
МДП-транзистора (максимальное напряжение между стоком и истоком и пороговое напряжение).
Максимально допустимое напряжение между стоком и истоком определяется минимальным из напряжений: пробивным напряжением стокового перехода или напряжением смыкания областей объемного заряда стокового и истокового переходов.
а) напряжение смыкания стокового и истокового переходов:
Напряжение смыкания стокового и истокового переходов для однородно легированной подложки можно оценить, используя соотношение:
,
где - длина канала, которую принимаем равной минимальной длине . Пример расчета:
В - при см-3
Результаты вычислений сведем в таблицу:
, см-3
1014
1015
1016
1017
, В
32,3
70,1
152,3
330,8
б) пробивное напряжение стокового p-n-перехода:
Пробой стокового p-n-перехода имеет лавинный характер и определяется по эмпирическому соотношению:
В –
намного больше, чем напряжение смыкания p-n-переходов.
Скорректируем значение пробивного напряжения, считая искривленные участки на краях маски цилиндрическими, а на углах - сферическими:
Результаты вычислений сведем в таблицу:
, см-3
1014
1015
1016
1017
, В
293,4
88,9
26,1
7,2
, В
152,2
61,4
25,3
10,8
Пример расчета:
для см-3: В
В
Рис.2. Зависимость максимальных напряжений на стоке от концентрации примесей.
Исходя из найденной ранее концентрации примесей см-3, имеем наименьшее из полученных напряжений В, что удовлетворяет условию задания (В).
III. Расчет порогового напряжения:
Пороговое напряжение МДП-транзистора с индуцированным каналом - это такое напряжение на затворе относительно истока, при котором в канале появляется заметный ток стока и выполняется условие начала сильной инверсии, т.е. поверхностная концентрация неосновных носителей заряда в полупроводнике под затвором становится равной концентрации примесей.
Пороговое напряжение, когда исток закорочен с подложкой, можно рассчитать по формуле:
- эффективный удельный поверхностный заряд в диэлектрике, - удельный заряд ионизированных примесей в обедненной области подложки, - удельная емкость слоя диэлектрика единичной площади под затвором, - контактная разность потенциалов между электродом затвора и подложкой, - потенциал, соответствующий положению уровня Ферми в подложке, отсчитываемый от середины запрещенной зоны.
Заряд ионизированных примесей определяется соотношением:
,
где - толщина обедненной области под инверсным слоем при .
Контактная разность потенциалов между электродом затвора и подложкой находится из соотношения:
.
Пример расчета:
В - для см-3
Кл/см2
В
В
В качестве металла электрода была выбрана платина (Pt), т.к. она имеет наибольшую работу выхода электронов, что увеличивает пороговое напряжение.
Результаты вычислений сведем в таблицу:
, см-3
, В
, см-3
, В
Металл электродов
, эВ
, В
1011
0,65
0,5·10-8
2,08
Al
4,1
0,88
1012
0,71
0,6·10-8
2,06
Ni
4,5
1,28
1013
0,79
0,7·10-8
2,04
Cu
4,4
1,18
1014
0,92
0,8·10-8
2,02
Ag
4,3
1,08
1015
1,22
0,9·10-8
2,00
Au
4,7
1,48
1016
2,08
10-8
1,98
Pt
5,3
2,08
В результате расчетов было получено значение максимальное значение В при см-3. Для того, чтобы получить В, требуется ввести новый технологический процесс, а именно имплантацию в приповерхностный слой отрицательных ионов акцепторной примеси с зарядом Кл/см-2, которая позволит увеличить пороговое напряжение.
В итоге получаем следующие параметры:
, см-3
, см-3
, эВ
, мкм
, Ф/см2
T, K
, В
107
1016
1,43
0,16
5·10-8
0
0,52
, эВ
, эВ
, эВ
, В
, Кл/см2
, Кл/см2
, В
4,07
5,307
5,3
-0,0072
5,68·10-8
9,6·10-8
4
Температурная зависимость порогового напряжения:
ККК
, см-3
, В
, 10-8 Кл/см2
, В
, В
1013
0
0,35
0,36
0
0,15
0,15
0,52
0,17
0,16
2,34
2,72
2,73
1014
0
0,41
0,42
0
0,50
0,51
0,52
0,11
0,099
2,34
2,85
2,86
1015
0
0,46
0,48
0
1,69
1,71
0,52
0,051
0,04
2,34
3,15
3,16
1016
0
0,52
0,53
0
5,68
5,75
0,52
-0,0072
-0,02
2,34
4,00
4,03
Рис.3. Температурная зависимость порогового напряжения.
Из приведенных расчетов видно, что концентрация примесей, а также количество вводимых ионов были выбраны правильно, что обеспечило требуемую величину порогового напряжения (4 В).
IV. Определение ширины канала:
Ширину канала в первом приближении можно определить из соотношения:
,
где - крутизна характеристики передачи, - заданный ток стока, - подвижность носителей заряда в канале при слабом электрическом поле.
Пример расчета:
мкм
Результаты вычислений сведем в таблицу:
, мкм
, мА/В
, Кл/см2
, В
, Ф/см2
, см2/ (В·с)
, мА
, мкм
4,29
1,2
5,68·10-8
0,52
5·10-8
700
40
9,41
Т.к. ширина канала по величине сравнима с длиной каналу (), то выбираем топологию транзистора с линейной конфигурацией областей истока, стока и затвора.
V. Расчет выходных статических характеристик МДП-транзистора:
Выходные статические характеристики представляют собой зависимости тока стока от напряжения на стоке при постоянных напряжениях на затворе:
,
где - критическая напряженность продольной составляющей электрического поля в канале.
На пологом участке вольт-амперной характеристики, т.е. при , воспользуемся следующей аппроксимацией:
,
где - ток стока при , - длина "перекрытой" части канала вблизи стока.
Расчет произведем по формуле:
где = 0,2 и = 0,6 - подгоночные параметры.
Пример расчета:
В
В
мкм
мА
Результаты вычислений сведем в таблицу:
, В
, В
, В
, В
, мА
, В/см
-0,108
20
10,35
4
4,58
40000
, В
0
1
2
3
4
5
6
7
, мкм
----
----
----
----
----
----
----
----
, мА
0
1,11
1,99
2,71
3,28
3,73
4,06
4,31
, В
8
9
10
11
12
13
14
15
, мкм
----
----
----
0,031
0,073
0,108
0,139
0,166
, мА
4,47
4,56
4,58
4,61
4,66
4,7
4,73
4,76
Рис.4. Статические выходные характеристики транзистора.
Зависимость, построенная на данном графике, довольно точно характеризует практическую закономерность возрастания выходного тока при увеличении напряжения между стоком и истоком. Характерный рост тока происходит до В (В), после чего наступает насыщение, при котором ток стока слабо зависит от напряжения на стоке из-за отсечки канала.
VI. Расчет крутизны характеристики передачи:
Если напряжение на стоке меньше напряжения насыщения, то крутизна определяется соотношением:
При расчет крутизны характеристики передачи производим по приближенной формуле:
Пример расчета:
мА/В
Результаты вычислений сведем в таблицы:тВ
, В
0
1
2
3
4 …. 20
, мА/В
0
0,076
0,15
0,23
0,3
В
, В
0
1
2
10
11 …. 20
, мА/В
0
0,076
0,15
0,76
0,79
В
, В
0
1
2
16
17 …. 20
, мА/В
0
0,076
0,15
1,2
1,24
Рис.5. Крутизна характеристики передачи транзистора.
Как видно из графика и расчетов, крутизна характеристики передачи, выбранная для расчета ширины канала (на графике обозначена мА/В), обеспечивается при В и В.
Выводы
В данной работе был произведен расчет основных параметров МДП-транзистора с индуцированным n-каналом, а также выбор и обоснование использования материалов и технологических методов его изготовления.
итоговые значения основных параметров: толщина диэлектрика под затвором нм, минимальная длина канала (критерий длинноканальности) мкм, концентрация примесей в подложке см-3, максимальное напряжение на стоке В, пороговое напряжение В, ширина канала мкм. По этим параметрам был произведен расчет выходной характеристики транзистора, выбор топологии и построение зависимости крутизны ВАХ от напряжений на стоке и затворе.
1. Топология транзистора 2. Поперечное сечение транзистора

Нравится материал? Поддержи автора!
Ещё документы из категории физика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ