Выбор и расчет электродвигателя

Введение


Для передачи вращающего момента, от вала двигателя к валу рабочей машины, в приводах различных машин и механизмов применяются редукторы.

Редуктором называют механизм состоящий из зубчатых или червячных передач выполненный в виде отдельного агрегата и служащий для передачи вращающего момента от вала двигателя к валу рабочей машины поэтому редукторы широко применяются в приводах различных машин и механизмов. Редуктор состоит из корпуса (ленточного чугунного или сварного стального) в котором помещают элементы передачи – зубчатые колеса валы подшипники и т.д.

Редуктор предназначен для понижения угловой скорости и соответственно повышения вращающего момента ведомого вала по сравнению с ведущим.

Редуктор проектируют либо для привода определённой машины, либо по заданной нагрузке и передаточному числу без указания конкретного назначения.

Передаточное отношение одноступенчатых цилиндрических редукторов ограничено Umax ≤ 6,3, поэтому для реализации больших передаточных отношений в схему привода дополнительно включают цепные или ременные передачи.

Для привода ленточного конвейера спроектировать одноступенчатый цилиндрический редуктор общего назначения с прямозубыми колесами предназначенный для длительной эксплуатации. Передача нереверсивная нагрузка близкая к постоянной. Работа двухсменная.

Исходные данные:

Тяговое усилие ленты Fл = 2,07 кН

Скорость ленты Vл = 1,33 м/с

Диаметр приводного барабана Дб = 380 мм

Схема привода



конвейер



С nб




Х

Х







Х

Х


В n2



М

A n1


1. Выбор электродвигателя и кинематический расчет


По таблице 1.1 [1] принимаем:

К.п.д. пары цилиндрических зубчатых колес 1 = 098;

К.п.д. пары подшипников качения 3 = 099;

К.п.д. открытой цепной передачи 2 = 092;

К.п.д. потерь в опорах приводного барабана 4 = 099

Общий К.п.д. привода

= 1 22 3 4 = 098 0992 092 099 = 087

Мощность на валу барабана


Рб = Vл Fл = 1.33 2.07 = 2.75кВт


Требуемая мощность электродвигателя


кВт


Угловая скорость барабана


рад/с


Частота вращения барабана


об/мин.


По ГОСТ 19523- 81 (таблица п.1) по требуемой мощности Ртр = 3,15 кВт выбираем асинхронный трехфазный короткозамкнутый электродвигатель серии 4А с синхронной частотой частотой вращения nc = 1000 об/мин. Типа 112 МВ6 с параметрами Рдв = 4 кВт и скольжением S = 5,1%.

Номинальная частота вращения двигателя

nдв = 1000 (1-S) = 1000(1-0.051)=949 об/мин

Угловая скорость электродвигателя


рад/с


Передаточное отношение привода




Принимаем по ГОСТ 2185-66передаточное отношение редуктора Up = 4, тогда передаточное отношение цепной передачи




Вращающие моменты на валах:


На валу шестерни Нм

Навалу колеса Т2 = T1 Up = 31,7 4 = 126,8 Нм


Частоты вращения и угловые скорости валов

Вал В

n1 = nдв= 949об/мин

1 = дв = 99,3 рад/с

Вал С

об/мин

рад/с

Вал А

n3 = nб = 67 об/мин

n3 = nб = 67 об/мин


2.Расчет зубчатых колес редуктора


По таблице 3.3 [1] выбираем материал зубчатых колес:

для шестерни сталь 45 – термообработка улучшение твердость НВ 230;

для колеса – сталь 45 – термообработка улучшение твердость НВ 200.

Допускаемые контактные напряжения (формула 3.9 [1])


,


где GНlimb – предел контактной выносливости при базовом числе циклов нагружения.

По таблице 3.2 [1] для материала колёс: Нlimb = 2НВ + 70.

КHL – коэффициент долговечности при длительной эксплуатации КHL = 10 (стр.33 [1]);

[Sн]- коэффициент безопасности. Для улучшеной стали [Sн] = 115 (cтр. 33 [1]).

Допускаемые контактные напряжения

для шестерни Мпа;

для колеса Мпа.

Коэффициент нагрузки, с учётом влияния изгиба от натяжения цепи, принимаем как для несимметрично расположенных колёс. По таблице 3.1[1] Кнл=1.25

Коэффициент ширины вунца по межосевому расстоянию Ψва= в/aw

Для прямозубых колёс Ψва= 0,16 (стр.36)

Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев определяем по формуле 3.7 [1]

мм,


Принимаем по ГОСТ 2185–66 аw = 180 мм

где Ка = 49,5 – коэффициент для прямозубых колес (страница 32 [1]).

Нормальный модуль зацепления

m = (001 002) аw = (001 002) 180 = (1,8 3,5) мм.

Принимаем по ГОСТ 9563-60 m = 3 мм

Определяем суммарное число зубьев колес




Число зубьев шестерни




Число зубьев колеса


Z2 = ZE Z1= 120-24 = 96


Уточняем передаточное отношение




Уточняем межосевое расстояние


аw =0,5(Z1Z2)m = 0.5 (24+96) ·3 =180 мм

Основные размеры шестерни и колеса:

делительные диаметры:


d1=m·z1= 3·24 = 72мм;

d2=zm = 96·3 = 288мм.


Проверка: мм.


диаметры вершин зубьев


da1 = d1 + 2m = 72 + 2 3 = 78 мм;

da2 = d2 + 2m = 288 + 2 3 = 294 мм.


диаметры впадин зубьев


df1 = d1- 2.5 m = 72-2.5·3 = 64.5 мм

Ширина колеса мм.

Ширина шестерни b1 = b2 + (2÷5) = 30 + 4= 34 мм.


Коэффициент ширины шестерни по диаметру


.


Окружная скорость колеса и степень точности передачи:


м/с.

При такой скорости колёс следует принять 8-ую степень точности передачи.

По таблице 3.5 [1] при bd = 0.47 и твердости НВ< 350, принимаем КН = 1.05.


По таблице 3.4 [1] при V = 3.6 м/с и 8-й степени точности, коэффициент КН =109.

По таблице 3.6 [1] для шевронных колес коэффициент КHv = 105.

Тогда коэффициент нагрузки КН = КН КН КНv = 1.05 109 105 = 1.20

Проверяем контактные напряжения по формуле 3.6 [1]


Мпа < [Н].


Силы действующие в зацеплении:


окружная сила Н

радиальная сила Н,


Проверяем зубья на выносливость по напряжениям изгиба по формуле 3.25 [1]


[F].


где коэффициент нагрузки КF = KF KFv

По таблице 3.7 [1] при bd = 0.47,твёрдости НВ<350. Коэффициент КF = 108

По таблице 3.8 [1] при V=3.6и 8-ой степени точности коэффициент КFv = 1.45

Тогда КF = 108· 145 =1,57

YF – коэффициент прчности зуба по местным напряжениям зависящий от эквивалентного числа зубьев zv:

тогда YF1 = 4.09 YF2= 3.61 (страница 42 [1]).

Допускаемые напряжения при изгибе




По таблице 3.9 [1] для стали 45 улучшенной при твердости НВ< 350 принимаем НВ.

для шестерни 0Flimb1 = 18 НВ1 = 18 230 = 414Мпа;

для колеса 0Flimb2 = 181 НВ2 = 18 200 = 360 Мпа.

Коэффициент безопасности [SF] = [SF] [SF]''.

По таблице 3.9 [1]: [SF] = 175 и [SF]'' = 10.

Тогда [SF] = 175 10 = 175.

Допускаемые напряжения:

для шестерни Мпа;

для колеса Мпа.

Производим сравнительную оценку прочности зубьев для чего находим отношение


:

для шестерни Мпа;

для колеса Мпа.

Дальнейший расчет ведем для зубьев колеса для которых это отношение меньше.


Мпа < [F2] = 206Мпа.


Вывод: условие прочности выполнено.


3. Предварительный расчет валов редуктора


Предварительный расчет валов проведем на кручение. Крутящие моменты в сучениях вылов: ведущего-T1 = 31,7 H·м; ведомого –Т2 = 126.8 Н·м


3.1 Ведущий вал


Крутящий момент на валу Т1 = 12.5.

Допускаемые напряжения на кручение [к] = 25 Мпа.

Диаметр выходного конца вала


мм.


Так как ведущий вал редуктора соединяется муфтой МУВП с валом электродвигателя, то необходимо согласовать диаметры выходных концов валов.

По таблице 2[1] для электродвигателя 4A112М dдв = 32мм.

Тогда dв1 = 0,75 dдв = 0,75 32 =24м (страница 296 [1]);

диаметр вала под подшипниками принимаем dп1 = 20мм.


Конструкция ведущего вала



3.2 Ведомый вал:


Крутящий момент на валу Т2 = 50м. Диаметр выходного конца вала под ведущую звездочку цепной передачи определяем по пониженным напряжениям [к] = 20 МПа чем учитывается влияние изгиба вала от натяжения цепи:


мм


Принимаем dв2 = 32, диаметр вала под подшипники dп2 = 35м под зубчатым колесом dк2 = 40.

Диаметр остальных участков валов назначаем исходя из конструктивных соображений при компоновке редуктора.

Конструкция ведомого вала









35







32


35


40


4. Конструктивные размеры шестерни и колеса


Шестерню выполняем за одно целое с валом ее размеры определены выше:

Z1 = 24; m = 3мм; dа1 = 78; df1 = 64.5м; b1 = 34.

Колесо кованое, его размеры

d2 = 288; da2 = 294; b2 = 30мм; m = 3мм; Z2 = 96 мм; df2 = 280.5мм,

диаметр ступицы колеса dст2 = 16 dк2 = 64мм

длина ступицы колеса lст2 = (1215) dк2 = (1215) 40 = (48-60)мм

принимаем lст2 = b2 = 50

Толщина обода 0 = (24) m = (24) 3= (612)мм

принимаем 0 = 10мм.

Толщина диска С = 03 b2 = 03 30=9мм, принимаем с = 10мм

Диаметр окружности центров в диске


Дотв =0,5 (До + dст2) = 0.5(269+64) = 162мм


Где До = df2 – (2do + 5m) = 294-(2·10+3·5) = 259мм

Диаметр отверстий в диске колеса



5.Конструктивные размеры корпуса редуктора


Толщина стенок корпуса и крышки


= 0025aw + 1мм = 0025 180 + 1 = 5,5 мм;

1 = 002aw +1мм = 002 180 + 1 = 4,6 мм


принимаем = 1 = 8мм.

Толщина фланцев поясов корпуса и крышки

b = b1 = 15 = 15 8 = 12 мм.

Толщина нижнего пояса корпуса

р = 235 = 235 8 = 18,8 мм принимаем p = 20 мм.

Диаметры болтов:

Фундаментных: d1 = (0030036)аw + 12 = (0030036)180 + 12 = (17,418,5) мм; принимаем болты с резьбой М18;

крепящих крышку к корпусу у подшипников:

d2 = (07075)d1 = (07075)18 = (12,613,5) мм принимаем болты с резьбой М12.

соединяющих крышку с корпусом: d3 = (0506)d1 = (0506)18 = (910,8) мм; принимаем болты с резьбой М10.

6. Расчет цепной передачи


Выбираем приводную роликовую однорядную цепь. Крутящий момент на валу

Т2 = 126,8Н·м

Передаточное отношение определено выше Uц = 3,55.

Число зубьев ведущей звездочки

z3 = 31 – 2Uц = 31 – 2 355 = 23,9; принимаем z3 = 24.

Число зубьев ведомой звездочки

z4 = z3Uц = 24 3,55 = 85,2. Принимаем z4 = 85

Фактическое передаточное отношение




что соответствует принятому.


Оклонение Δ =


Допускается ± 3%

Определяем расчетный коэффициент нагрузки (формула 7.38[1]);


Кэ = КдКаКнКрКсмКп = 1111251125 = 156;


где Кд = 1 – динамический коэффициент при спокойной нагрузке;

Ка = 1 – коэффициент, учитывает влияние межосевого расстояния при ац (30÷60)t;

Кн = 1 – коэффициент влияние угла наклона линии центров при = 45; Кн =1,0

Кр – коэффициент, учитывает способ регулирования натяжения цепи Кр = 125 при периодическом регулировании натяжения цепи;

Ксм – коэффициент учитывает способ смазки; при непрерывной смазке Ксм = 10;

Кп – учитывает продолжительность работы передачи в сутки при двухсменной работе Кп = 125.

Для определения шага цепи надо знать допускаемое давление [p] в шарнирах цепи. По таблице 7.18 [1] при n2 = 238 об/мин, ориентируясь на шаг цепи t = 19,05 принимаем [p] = 24 МПа.

Шаг однорядной цепи


мм.


Подбираем по таблице 7.15 [1] цепь ПР–25,4–60 по ГОСТ 13568-75, имеющую: шаг t = 25,4 мм; разрушающую нагрузку Q = 60кН; массу q = 2,6 кг/м;

Аоп = 179,7мм2.

Скорость цепи


м/с.


Окружная сила


H.


Давление в шарнирах проверяем по формуле 7.39 [1]:

МПа.


Уточняем по таблице 7.18 [1] допускаемое давление.

р = 23 [ 1 + 001 (z3 – 17)] = 21 [1 + 001 (24 – 17)] = 22,5 МПа.

Условие р [p] выполнено.

Определяем число звеньев цепи (формула 7.36 [1])



где (стрaница 148 [1]); z = z3 + z4 = 24 + 85 = 109.




тогда Lt = 2 · 50 + 05 · 109 + = 156,4. Округляем до четного числа Lt = 156.

Уточняем межосевое расстояние цепной передачи по формуле 7.37 [1]




Для свободного провисания цепи предусматриваем возможность уменьшения межосевого расстояния на 04% т.е. на 1265 · 0004 5 мм.

Определяем диаметры делительных окружностей звездочек по формуле 7.34 [1]

мм;

мм.


Определяем диаметры наружных окружностей звездочек.


мм

мм,


где d1 = 15,88 мм – диаметр ролика цепи (таблица 7.15 [1]).

Силы, действующие на цепь:

Окружная Ftц = 1300Н (определены выше).

От центробежных сил Fv = q · 2 = 2,6 · 2,422 = 16 H.

От провисания цепи Ff = 981 · Kf · q · ац = 981 · 15 · 2,6 · 1,27= 49 Н,

Расчетная нагрузка на вал Fв = Ftц + 2Fγ = 1300+ 2 · 49 = 1398H.

Проверяем коэффициент запаса прочности цепи (формула 7.40 [1])


> [S] = 8,4


где [S] = 8,4– нормативный коэффициент запаса прочности цепи (таблица 7.19 [1]).

Условие S > [S] выполнено

Размеры ведущей звездочки:

dd3 =194.6мм; Дез = 206мм

диаметр ступицы звездочки

Дст3= 16 dв2 = 16 · 32 = 52мм;

длина ступицы lст3 = (1216) · dв2 = (1216) · 32 = (38,4÷51,2) мм;

принимаем lст3 = 50 мм.

Толщина диска звездочки

С = 093 Вн = 093 · 15,88 =14,8 мм

где Вн = 15,88 мм – расстояние между пластинами внутреннего звена цепи (табл. 7.15 [1])

7. Первый этап компоновки редуктора


Компоновку выполняется в два этапа. Превый этап позволяет приближенно определить положение зубчатых колес и ведущей звездочки цепной передачи относительно опор для последующего определения опорных реакций и набора подшипников.

Компоновочный чертеж выполняем в одной проекции – разрез по осям валов при снятой крышке корпуса в масштабе М 1:1.

Примерно по середине листа проводим горизонтальную осевую линию затем две вертикальные оси валов на расстоянии аw = 180 мм.

Вычерчиваем упрощенно шестерню и колесо: шестерня выполнена за одно целое с валом: длина ступицы колеса равна ширине венца колеса.

Очерчиваем внутреннюю стенку корпуса:

а) принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса А = δ =10 мм;

б) принимаем зазор между торцом ступицы шестерни и внутренней стенкой корпуса А1 = 10 мм;

в) принимаем зазор между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса А2 = 10 мм.

Предварительно намечаем радиальные шарикоподшипники легкой серии по ГОСТ 8338-75. Габариты подшипников выбираем из таблицы П3. [1] по диаметру вала в месте посадки подшипника: dп1 = 30 мм; dп2 = 35 мм.


Условное обозначение подшибника

d

D

B

Грузоподъёмность, кН

Размеры, мм


206

30

62

16

19,5

10

207

35

72

17

25,5

13,7


Решаем вопрос смазки подшипников. Принимаем для подшипников пластичную смазку. Для предотвращения вытекания смазки внутрь и вымывания пластичной смазки жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца. Их ширина определяет размер У=10 мм; принимаем У = 10 мм.

Находим расстояние от середины шестерни до точек приложения реакции подшипников к валам:


на ведущем валу мм;

на ведомом валу мм;


тоесть l1 = l2 = 54 мм.

Из расчета цепной передачи определяем расстояние от точки приложения натяжения цепи к валу, до точки приложения реакции ближайшего из подшипника ведомого вала.

Длина гнезда подшибника


мм,


S = 10 мм – толщина врезной крышки;

Определяем расстояние от точки приложения натяжения цепи к валу до реакции ближайшего подшибника ведомого вала


мм

8. Проверка долговечности подшипников


8.1 Ведущий вал


Силы, действующие в зацеплении:

Ft = 500 H; Fr = 182 H, из первого этапа компоновки l1 = 46 мм.


Расчетная схема вала


Определяем реакции опор:

а) в горизонтальной плоскости H;

б) в вертикальной плоскости Н.

Определяем изгибающие моменты и строим эпюры:

а) в горизонтальной плоскости

Mx1 = 0; Mx2 = 0; Mcx = Rx1· l1 = 440· 54 = 23760 H·мм = 23,76 Н·м;

б) в вертикальной плоскости

My1 = 0; My2 = 0; Mcy = Ry1· l1 = 160· 54 = 8640 H·мм = 8,64 Н·м.

Определяем суммарные реакции опор




Так как осевая нагрузка в зацеплении отсутствует то коэффициент осевой нагрузки

y = 0 а радиальной x = 10.

Эквивалентную нагрузку определяем по формуле


Рэ = x · v · R · Кб · Кт


при t < 100 C температурный коэффициент Кт = 10 (табл. 9.20 [1] );

V = 10 – коэффициент при вращении внутреннего кольца подшипника.

Кб =1.2 –коэфициент безопасности для редукторов

Тогда Рэ = 1,0 · 1,0 · 470 · 12 · 1,0 = 570 H = 0,57кН.

Расчетная долговечность, часов


часов.

8.2 Ведомый вал


Силы действующие в зацеплении: Ft = 880 H; Fr = 320 H; Fц = 1398 H. Крутящий момент на валу Т2 = 126 Н·м. n2 = 238об/мин

Из первого этапа компоновки: l2 = 54 мм; l3 = 70 мм.

Расчетная схема вала




Составляющие действующие на вал от натяжения цепи.


Fцx = Fцy = Fц · sinγ = 1398 · sin 45° = 1398 · 07071 = 988 Н.

Определяем реакции опор:

а) в горизонтальной плоскости


m3 = 0; Fцx· (2l2 + l3) – Ft · l2Rx4 · 2l2 = 0;

Н;

m4 = 0; – Rx3 · 2l2 + Ft · l2 + Fцx · l3 = 0

H.


Проверка:


xi = 0; Rx3 + Fцx – Ft – Rx4 = 1126 + 988 – 880 – 1234= 0.


Следовательно реакции определены верно.

б) в вертикальной плоскости


m3 = 0; Fr· l2 + Fцy· (2l2 + l3) – Ry4· 2l2 = 0

H;

m4 = 0; – Ry3· 2l 2 – Fr· l 2 + Fцy· l 3 = 0;

Н.


Проверка:


yi = 0; Ry3 + Fr + Fцy – Ry4 = 480 + 320+988 – 1788 = 0.


Следовательно реакции определены верно.

Определяем изгибающие моменты и строим эпюры:

а) в горизонтальной плоскости


Мx3 = 0; Mbx = 0;

Max = - Rx3· l2 = - 1126· 54 = - 60800 H·мм = -60,8 Н·м;

M = - Fцx· l3 = - 988 ·70 = - 69160 H·мм = - 69,16 Н·м;


б) в вертикальной плоскости


M3y = 0 M by = 0;

May = Ry3· l 2 = 480 · 54 = 25920 H·мм = 25,92 Н·м;

M4y = - Fцy· l 3 = - 998 · 70 = - 69160 H·мм = - 69,16 Н·м.


Определяем суммарные реакции опор


Н;

Н.


Эквивалентную нагрузку определяем для более нагруженной опоры “4” так как

R4 > R3.

Значения коэффициентов принимаем те же что и для ведущего вала:

x = 1,0 v = 1,0 Кт = 1,0 Кб = 12. У = 0;

Определяем эквивалентную нагрузку


Рэ4 = x · v · R4 · Кт · Кб = 1,0 · 1,0 · 2,18 · 1,2 · 10 = 2,62 кН.


Расчетная долговечность, часов

часов.


Подшипники ведущего вала № 205 имеют ресурс Lh = 69·104 ч а подшипники ведомого вала № 206 имеют ресурс Lh = 64,52·103 часов.

9. Проверка прочности шпоночных соединений


Шпонки призматические со скругленными торцами. Размеры сечений шпонок пазов и длины по ГОСТ 23360 – 78. Материал шпонок сталь 45 нормализованная.

Напряжения смятия и условие прочности


;


допускаемые напряжения при стальной ступице [см] = 120 МПа, а при чугунной ступице [G см] = 70 МПа.


9.1 Ведущий вал


Крутящий момент на валу Т1 = 31,7 Н·м.

Шпонка на выходном конце вала для соединения муфтой с валом электродвигателя. По таблице 8.9 [1] при dв1 = 18 мм находим b×h = 8×7 мм; t1 = 4 мм; длина шпонки

l = 40 мм при длине ступицы полумуфты lст = 45 мм (Таблица 11.5 [1]).

Тогда


9.2 Ведомый вал


Крутящий момент на валу Т2 = 126,8 Н·м.

Шпонка под зубчатым колесом dк2 = 40 мм. По табл. 8.9 [1] принимаем b×h = 12×8 мм; t1 = 5 мм; длина шпонки l = 45 мм . При длине ступицы колеса lст3 = 50 мм.

Тогда


Шпонка на выходном конце вала, под ведущую звёздочку цепной передачи,

dв2 = 32мм; По таблице8.9[1] b×h = 10×8; t 1 = 5мм; l = 50мм; при длине ступицы звёздочки lст = 55мм

Звёздочка литая из стали 45Л


Тогда


Вывод: Условие см  [см] выполнено.

10. Уточненный расчет валов


Будем выполнять расчет для предположительно опасных сечений. Прочность соблюдена при S  [S].


10.1 Ведущий вал


Материал вала сталь 45, улучшенная так как вал изготовлен за одно целое с шестерней. По таблице 3.3 [1] при диаметре заготовки до 90 мм (в нашем случае da1 = 78 мм) принимаем в = 780 МПа.

Предел выносливости при симметричном цикле изгиба


= 043·в = 043 · 780 = 335 МПа.


Предел выносливости при симметричном цикле касательных напряжений


-1 = 058· = 058 · 335 = 193 МПа.


Сечение А-А .

Это сечение выходного конца вала dв1 = 24 мм под муфту, для соединения вала двигателя с валом редуктора. Концентрацию напряжений вызывает наличие шпоночной канавки. По таблице 8.9 [1] при dв1 = 24 мм находим b = 8 мм; t1 = 4 мм. Это сечение рассчитываем на кручение. Коэффициент запаса прочности сечения


.

Момент сопротивления кручению


мм3.


Крутящий момент на валу Т1 = 12,5 Н·м.

Амплитуда и среднее напряжение цикла касательных напряжений


МПа.


Принимаем по таблице 8.5 [1] K = 178

по таблице 8.8 [1]  = 083 и  = 01. Тогда




10.2 Ведомый вал


Материал вала – сталь 45, нормализованная. По табл.3.3[1] принимаем в = 580 МПа.

Cечение вала А-А.

Это сечение под зубчатым колесом dк2 = 40 мм. Крутящий момент на валу

Т2 = 126,8 Н·м. Концентрация напряжений обусловлена наличием шпоночной канавки. По табл. 8.9 [1] при dк2=35мм находим b = 12 мм, t1 = 5 мм.

Вал подвергается совместному действию изгиба и кручения.

Момент сопротивления изгибу:

мм3.


Амплитуда нормальных напряжений:


МПа.


Амплитуда и среднее напряжение цикла касательных напряжений:


МПа.


По табл. 8.5 [1] K= 1,58; K = 1,48;

По табл. 8.8 [1]  = 0,85; = 0,73; = 0,1.

Коэффициент запаса прочности по нормальным напряжениям


.


Коэффициент запаса прочности по касательным напряжениям




Результирующий коэффициент запаса прочности сечения



Сечение вала Б-Б.

Это сечение выходного конца вала под ведущую звездочку цепной передачи

dв2 = 32мм. Концентрация напряжений обусловлена наличием шпоночной канавки. По табл. 8.9 [1] при dв2=25 мм находим b = 10 мм, t1 = 5 мм.

Вал подвергается совместному действию изгиба и кручения

Изгибающий момент в сечении под звездочкой

Mи = Fц· x  приняв x =50 мм получим

Ми = 1398 · 50 = 69,9 Н·м.

Момент сопротивления кручению


мм3.


Момент сопротивления изгибу


мм3.


Амплитуда нормальных напряжений


МПа; m = 0.


Амплитуда и среднее напряжение цикла касательных напряжений


МПа.

По табл. 8.5 [1] принимаем К= 158; К = 148.

По табл. 8.8 [1] находим = 087;  = 076;

Коэффициент запаса прочности по нормальным напряжениям




Коэффициент запаса прочности по касательным напряжениям




Результирующий коэффициент запаса прочности сечения




Вывод: прочность валов обеспечена.

11. Выбор сорта смазки


Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса редуктора.

Объем масляной ванны (Vм) определяется из расчета 025 дм3 масла на 1 кВт передаваемой мощности.

Vм = 025· Ртр = 3,15 = 0,7 дм3.

По табл. 10.8 [1] устанавливаем вязкость масла. При контактных напряжениях

н = 302 МПа и скорости колес V = 4,26 м/с рекомендуемая вязкость масла

50 = 28·10-6 м2/c

По табл. 10.10 [1] по ГОСТ 20799 – 75 выбираем масло индустриальное И - 30А.

Подшипниковые камеры заполняют пластичной смазкой УТ-1 (Табл. 9.14 [1]). Периодически смазка пополняется шприцем через пресс – масленки.

12. Посадки деталей редуктора


Посадки назначаем в соответствии с указаниями таблица 10.13. [1]

по ГОСТ 25347 – 82.

Посадка зубчатого колеса на вал .

Посадка ведущей звездочки на вал .

Шейки валов под подшипники выполняем с отклонением вала к6. Отклонения отверстий в корпусе под наружные кольца подшипников по Н7.

Посадки остальных деталей указаны на сборочном чертеже редуктора.


13. Сборка редуктора


Перед сборкой внутреннюю полость редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вала начиная с узлов валов;

На ведущий вал насаживают мазеудерживающие кольца и устанавливают шарикоподшипники номер 206 предварительно нагретые в масле до t = 90 – 100 С и надевают сквозную подшипниковую крышку.

В ведомый вал закладывают шпонку 12×8×45 мм и напрессовывают колесо до упора в бурт вала устанавливают распорную втулку мазеудерживающие кольца шарикоподшипники номер 207 предварительно нагретые в масле и надевают сквозную подшипниковую крышку.

Собранные валы укладывают в основание корпуса заполняют подшипниковые камеры пластичной смазкой. Покрывают поверхности стыка корпуса и крышки спиртовым лаком устанавливают в проточки корпуса глухие врезные подшипниковые крышки и устанавливают крышку корпуса.

Перед установкой сквозных подшипниковых крышек в проточки закладывают войлочные сальники.

Для центровки крышка устанавливается на корпусе с помощью двух конических штифтов.

Проверяют проворачиванием валов отсутствие заклинивания подшипников и закрепляют крышку корпуса болтами.

Ввертывают пробку маслоспускного отверстия с прокладкой жезловый маслоуказатель и пресс-масленки. Заливают внутрь корпуса масло индустриального И – 30А и закрывают смотровое отверстие крышкой с прокладкой из маслостойкой резины и закрепляют крышку болтами.

Собранный редуктор обкатывают и подвергают испытанию на стенде.

Литература


Чернавский С.А. и др. “Курсовое проектирование деталей машин”. М. 1987г.

Устюгов.И.И «Детали машин». М 1981г.

Нравится материал? Поддержи автора!

Ещё документы из категории физика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ