Аналоговые и гибридные машины

Введение


Целью курсового проекта по дисциплине «Аналоговые и гибридные ЭВМ» является закрепление основных теоретических знаний и практических навыков в ходе самостоятельной работы.

Методы аналоговой вычислительной техники вместе с методами цифровой вычислительной техники занимают важное место в современной науке и технике. Исследование физических процессов и сложных динамических систем, которые описываются системами дифференциальных уравнений высокого порядка с большим количеством нелинейностей, наиболее целесообразно проводить при помощи АВМ. Это объясняется тем, что специфика аналоговых машин позволяет инженеру не только выполнять ряд необходимых вычислений, но и исследовать системы в условиях, максимально близких к реальным ситуациям.

В ходе работы необходимо:

  1. разработать программу решения дифференциального уравнения с изменяемой правой частью.

  2. обеспечить управление процессом решения и задания начальных условий при помощи цифровой ЭВМ.



1. Выбор варианта задания


35 – число, заданное преподавателем

3 – номер по списку

35+3=38 – номер варианта

Для варианта 38 заданы следующие параметры:

ny (t) Ymax NT, с ∆Uдоп, % m МП, V

5 cos t 0,5 10 1 0,2 6 +10


n – порядок дифференциального уравнения

N – разрядность аналого – цифровых и цифроаналоговых преобразователей, которые задают входные величины и преобразуют результаты решения

у(t) – математическое описание нелинейной функции

Ymax – амплитудное значение нелинейной функции

T – период перезапуска моделирующей схемы

Uдоп – допустимая погрешность интегрирования


Начальные условия:


x4(0) х3(0) х2(0) х1(0) х(0)

0 3 0 1 6


Максимальные значения :


x5max x4max х3max х2max х1max xmax

-8 -8 8 -7 -5 1


Коэффициенты:

a4 а3 а2 а1 а0 b

2 1 -1 2 12 28


t= t(0)=0

Интервал ty определения нелинейной функции

Заданное уравнение имеет вид:



2. Выполнение программирования задачи


Заданное уравнение имеет вид:



Заданное уравнение записываем относительно старшей производной:



Построение предварительной схемы решения уравнения:


2.1 Расчёт масштабных переменных


Масштабом произвольной переменной называется число, показывающее величину напряжения, приходящегося на единицу этой переменной. В общем случае масштаб Мх определяется выражением:

Мх = Uмп/xmax [в/ед.],

где Uмп – напряжение, действующее в машине.



3.2 Расчёт коэффициентов передачи


Для усилителя у1:



Для усилителя у2:



Для усилителя у3:



Для усилителя у4:



Для усилителя у5:



Для усилителя у6:



Для усилителя у7:



Для усилителя у8:



3.3 Расчёт напряжений начальных условий


Знак начальных условий определяется знаком действующей на выходе усилителя переменной. Если она имеет свой знак (+), то начальные условия подаются с заданным в задаче знаком; если переменная на выходе усилителя формируется с противоположным знаком (–), то начальные условия вводятся с обратным заданному знаком. Для ввода начальных условий в машину, их величины трансформируют с помощью масштабов в соответствующие значения напряжений, при этом получим:


Ux4(0) = Mx4 * x4(0) * (-1) = (-1.25)*0*(-1) = 0V

Ux3(0) = Mx3 * x3(0) * (+1) = 1.25*3*(+1) = 3.75V

Ux2(0) = Mx2 * x2(0) * (-1) = -1.429*0*(-1) = 0V

Ux1(0) = Mx1 * x1(0) * (+1) = -2*0*(+1) = -2V

Ux (0) = Mx * x (0) * (-1) = 10*6*(-1) = -60V – выходит за пределы МП=+-10V


Новые значения напряжения начальных условий:



Ux (0) = M`x * x (0) * (-1) = 1.667*6*(-1) = -10V



3. Аппроксимация нелинейной функции



x 0 /12 /6 /4 /3 5/12 /2

y 0,5 0,483 0,433 0,354 0,25 0,129 0


Так как интервал разбиения функции равен , то вычисляем следующие коэффициенты наклона соответствующих участков аппроксимируемой функции:


14 1


  1. Построение блоков формирования отрезков аппроксимирующей функции




5. Формирование функции времени


Интервал изменения:

Время циклического перезапуска: T = 1c

Теперь смоделируем функцию:




6. Аппроксимация





ША

ШД

ШК

Б1

Б2

РС

Рисунок 2.1 - Структурная схема аналого-цифрового прибора



y(t) K11


- x/ K12


- x K13

У1

- x/ K21

x (0)

+x K31

- x

У2

У3

- x/ (0)

Рисунок 3.1 – Схема решения уравнения


Ф

ДБНФ

1

ДБНФ

2

ДБНФ

6


СУМ

U

t

y(t1)

y(t2)

y(t6)

y(t)


Рисунок 3.2 – Блок-схема формирования нелинейной функции

Таким образом, автоматически формируется левая часть уравнения. При этом условно считается, что старшая производная x// известна, поскольку члены правой части уравнения известны и могут быть подключены к входам У1 (рисунок 3.1). Операционный усилитель У3 выполняет роль инвертора сигнала +х. Для моделирования x// необходимо в схему ввести еще один підсумовуючий усилитель, на входы которого необходимо подать сигналы, которые моделируют правую часть уравнения (3.2).

Рассчитываются масштабы всех переменных с учетом того, что максимальная величина машинной переменной за абсолютной величиной равняется 10 В:


Mx = 10 / xmax; Mx/ = 10 / x/ max; Mx// = 10 / x //max;

My = 10 / ymax. (3.3)


Масштаб времени Mt = T / tmax = 1, поскольку моделирование задачи осуществляется в реальном масштабе времени.

Рассчитываются коэффициенты передачи по каждому входу интегрирующих усилителей.

Для усилителя У1 коэффициенты передачи находятся за формулами:


K11 = Mx/ b / (MyMt); K12 = Mx/ a2 / (MxMt);

K13 = Mx/ a1 / (MxMt). (3.4)

Для усилителя У2:

K21 = Mx/ / (Mx/ Mt), (3.5)

и для усилителя У3:

К31 = 1. (3.6)


Напряжения начальных условий вычисляются за формулами:

ux/ (0) = Mx/ x/ (0) (-1); ux(0)= Mxx(0) (+1). (3.7)

Правая часть уравнения (3.2) представлена нелинейной функцией, которая задается путем линейной аппроксимации. При этом необходимо проверять, чтобы погрешность аппроксимации не превышала заданную величину. Блок-схема формирования нелинейной функции представлена на рисунку 3.2.



7. Описание принципиальной схемы


Блок формирования функции времени (Ф) выполняется в виде одного (для формирования t) или двух последовательно соединенных (для формирования t2) интегрирующих усилителей с нулевыми начальными условиями.

В этом случае при подаче на вход первого интегратора сигнала U, на его выходе получим:


u1(t)= – K11 = – K11Et. (3.8)


Положив K11E=1, имеем u1(t)= t.

На выходе второго интегратора получим:


u2(t)= K21 = K11K21Et2 / 2 (3.9)


Положив K11K21E/2 = 1, имеем u2(t)= t2.


Блоки формирования отрезков аппроксимирующей функции реализуются в виде диодных блоков нелинейных функций (ДБНФ), входной величиной для которых является функция времени t или t2. Порядок расчета и построения ДБНФ приведенные в [1, с. 59 – 69].

Сумматор (ГРУСТЬ) отрезков аппроксимирующей функции выполняется в виде дифференциального итогового усилителя.

Начальные условия для интеграторов моделирующей схемы вводятся с помощью узла с переменной структурой (рисунок 3.3). Эта схема может работать в двух режимах:

а) интегрирование – при положении ключа К в позиции 1. При этом исходный сигнал схемы с достаточной точностью описывается уравнением идеального интегратора:

u1(t)= – (1 / RC) . (3.10)


Этот режим используется при моделирование задачи. Для проверки правильности выбора параметров R и C интегратора проверяют величину исходного напряжения интегратора в функции времени и полезное время интегрирования в пределах допустимой ошибки ?Uдоп.

Величина исходного напряжения интегратора


U(t)= – KYE {1 – e – Т / [(Ky+1)RC} (3.11)


за время моделирования Т при интегрировании входного сигнала E с использованием операционного усилителя с коэффициентом передачи Ky без цепи обратной связи не должна превышать значения машинной переменной (10 В).

Время интегрирования


Tи = 2RC(Kу + 1)?Uдоп (3.12)


при выбранных параметрах схемы не должен быть меньше, чем время моделирования Т.

б) задание начальных условий реализуется при переводі ключа К в положение 2. Этот режим используется при подготовке моделирующей схемы к процессу решения. При этом исходный сигнал схемы описывается уравнением:


u0(t)= – (R2 /R1) E (3.13)


где u0(t) – величина начальных условий.

С целью сокращения времени формирования начальных условий и обеспечение надежной работы, параметры схемы должны удовлетворять условие: R1C1 = R2C.

Построить полную расчетную схему. При этом следует пользоваться условными обозначениями, приведенными в подразделе 3.1.

Пользуясь разрядностью входных и исходных данных, построить принципиальные схемы блоков Б1 и Б2 и соединить их с блоком РС.



Вывод


В ходе работы над курсовым проектом по дисциплине «Аналоговые и гибридные ЭВМ» были закреплены основные теоретические знания и практические навыки, включающие задачи анализа и синтеза формул и схем.

В результате выполнения данной работы были приобретены практические навыки при программировании задач и проектировании принципиальных схем аналого-цифровых устройств вычислительной техники. Были построены функциональная схема, которая реализует решение дифференциального уравнения, и принципиальная схема полученного входе решения устройства.



Список литературы


  1. Применение интегральных микросхем в электронной вычислительной технике: Cправочник; Под ред. Б.Н. Файзулаева, Б.В. Тарабрина. – М.: Радио и связь, 1986.

2. Анисимов Б.В., Голубкин В.Н., Петраков С.В. Аналоговые и гибридные ЭВМ. – М.: Высшая школа., 1986.

3. Гутников Б.Г. Телец В.А. Интегральная электроника в измерительных устройствах. – Л.: Энергоатомиздат, 1988.

4. Федорков Б.Г. Телец В.А. Микросхемы ЦАП и АЦП: функционирование, параметры, применение. М.: Энергоатомиздат, 1988.

Нравится материал? Поддержи автора!

Ещё документы из категории информатика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ