Компьютерные сети

Содержание


1. Введение

2. Компьютерные сети

2.1 Локальные сети

2.1.1 Определение локальной сети

2.1.2 Архитектурный принцип построения сетей

2.1.3 Топология локальных сетей

2.2 Глобальные сети

2.2.1 Характеристика глобальной сети

2.2.2 Структура глобальной сети

2.2.3 Типы глобальных сетей

2.2.4 Пример глобальной сети – Интернет

3. Вывод

4. Список используемой литературы


1. Введение


Попробуем представить себе мир примерно тридцать пять — сорок лет назад. Мир без общедоступных компьютерных сетей. Мир, в котором каждый компьютер должен был иметь собственное хранилище данных и собственный принтер. Мир, в котором не было электронной почты и систем обмена мгновенными сообщениями (например, ICQ). Как ни странно это звучит сейчас, но до появления компьютерных сетей все это было именно так.

Компьютеры — важная часть сегодняшнего мира, а компьютерные сети серьезно облегчают нашу жизнь, ускоряя работу и делая отдых более интересным.

Практически сразу после появления ЭВМ возник вопрос о налаживании взаимодействия компьютеров друг с другом, чтобы более эффективно обрабатывать информацию, использовать программные и аппаратные ресурсы. Появились и первые сети, в то время объединявшие только большие ЭВМ в крупных компьютерных центрах. Однако настоящий "сетевой бум" начался после появления персональных компьютеров, быстро ставших доступными широкому кругу пользователей — сначала на работе, а затем и дома. Компьютеры стали объединять в локальные сети, а локальные сети — соединять друг с другом, подключать к региональным и глобальным сетям. В результате за последние пятнадцать–двадцать лет сотни миллионов компьютеров в мире были объединены в сети, и более миллиарда пользователей получили возможность взаимодействовать друг с другом.


2. Компьютерные сети


При физическом соединении двух и более компьютеров образуются компьютерные сети.

Компьютерная сеть — система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило — различные виды электрических сигналов, световых сигналов или электромагнитного излучения.

Назначение всех видов компьютерных сетей определяется двумя функциями:

1) обеспечением совместной работы компьютеров и других устройств коллективного пользования (принтера, сканера и т.п.);

2) обеспечением доступа и совместного использования аппаратных, программных и информационных ресурсов сети (дискового пространства, коллективных баз данных и др.).

Компьютерные сети распределяются на:

а) вычислительные;

б) информационные;

в) смешанные (информационно-вычислительные).

Вычислительные сети предназначены главным образом для решения заданий пользователей с обменом данными между их абонентами. Информационные сети ориентированы в основном на предоставление информационных услуг пользователям. Смешанные сети совмещают функции первых двух.


2.1 Локальные сети


2.1.1 Определение локальной сети

Способов и средств обмена информацией за последнее время предложено множество: от простейшего переноса файлов с помощью дискеты до всемирной компьютерной сети Интернет, способной объединить все компьютеры мира. Какое же место в этой иерархии отводится локальным сетям ?

Чаще всего термин " локальные сети " или "локальные вычислительные сети" (LAN, Local Area Network) понимают буквально, то есть это такие сети, которые имеют небольшие, локальные размеры, соединяют близко расположенные компьютеры. Однако достаточно посмотреть на характеристики некоторых современных локальных сетей, чтобы понять, что такое определение не точно. Например, некоторые локальные сети легко обеспечивают связь на расстоянии нескольких десятков километров. Это уже размеры не комнаты, не здания, не близко расположенных зданий, а, может быть, даже целого города.

Неверно и довольно часто встречающееся определение локальной сети как малой сети, которая объединяет небольшое количество компьютеров. Действительно, как правило, локальная сеть связывает от двух до нескольких десятков компьютеров. Но предельные возможности современных локальных сетей гораздо выше: максимальное число абонентов может достигать тысячи.

Наверное, наиболее точно было бы определить как локальную, такую сеть, которая позволяет пользователям не замечать связи. Еще можно сказать, что локальная сеть должна обеспечивать прозрачную связь. По сути, компьютеры, связанные локальной сетью, объединяются, в один виртуальный компьютер, ресурсы которого могут быть доступны всем пользователям, причем этот доступ не менее удобен, чем к ресурсам, входящим непосредственно в каждый отдельный компьютер. Под удобством в данном случае понимается высокая реальная скорость доступа, скорость обмена информацией между приложениями, практически незаметная для пользователя. При таком определении становится понятно, что ни медленные глобальные сети, ни медленная связь через последовательный или параллельный порты не подпадают под понятие локальной сети.

Из данного определения следует, что скорость передачи по локальной сети обязательно должна расти по мере роста быстродействия наиболее распространенных компьютеров.

Таким образом, главное отличие локальной сети от любой другой — высокая скорость передачи информации по сети. Но это еще не все, не менее важны и другие факторы.

В частности, принципиально необходим низкий уровень ошибок передачи, вызванных как внутренними, так и внешними факторами. Ведь даже очень быстро переданная информация, которая искажена ошибками, просто не имеет смысла, ее придется передавать еще раз. Поэтому локальные сети обязательно используют специально прокладываемые высококачественные и хорошо защищенные от помех линии связи.

Особое значение имеет и такая характеристика сети, как возможность работы с большими нагрузками, то есть с высокой интенсивностью обмена. Ведь если механизм управления обменом, используемый в сети, не слишком эффективен, то компьютеры могут подолгу ждать своей очереди на передачу. И даже если эта передача будет производиться затем на высочайшей скорости и безошибочно, для пользователя сети такая задержка доступа ко всем сетевым ресурсам неприемлема. Ему ведь не важно, почему приходится ждать.

Механизм управления обменом может гарантированно успешно работать только в том случае, когда заранее известно, сколько компьютеров (или, как еще говорят, абонентов, узлов), допустимо подключить к сети. Иначе всегда можно включить столько абонентов, что вследствие перегрузки забуксует любой механизм управления. Наконец, сетью можно назвать только такую систему передачи данных, которая позволяет объединять до нескольких десятков компьютеров, но никак не два, как в случае связи через стандартные порты.

Таким образом, сформулировать отличительные признаки локальной сети можно следующим образом:

1) Высокая скорость передачи информации, большая пропускная способность сети.

2) Низкий уровень ошибок передачи (высококачественные каналы связи).

3) Эффективный, быстродействующий механизм управления обменом по сети.

4) Заранее четко ограниченное количество компьютеров, подключаемых к сети.

При таком определении понятно, что глобальные сети отличаются от локальных прежде всего тем, что они рассчитаны на неограниченное число абонентов. Кроме того, они используют (или могут использовать) не слишком качественные каналы связи и сравнительно низкую скорость передачи. А механизм управления обменом в них не может быть гарантированно быстрым. В глобальных сетях гораздо важнее не качество связи, а сам факт ее существования.

Нередко выделяют еще один класс компьютерных сетей — городские, региональные сети (MAN, Metropolitan Area Network), которые обычно по своим характеристикам ближе к глобальным сетям, хотя иногда все-таки имеют некоторые черты локальных сетей, например, высококачественные каналы связи и сравнительно высокие скорости передачи. В принципе городская сеть может быть локальной со всеми ее преимуществами.

Правда, сейчас уже нельзя провести четкую границу между локальными и глобальными сетями. Большинство локальных сетей имеет выход в глобальную. Но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. И хотя все компьютеры локальной сети в данном случае включены также и в глобальную сеть, специфики локальной сети это не отменяет. Возможность выхода в глобальную сеть остается всего лишь одним из ресурсов, разделяемых пользователями локальной сети.

По локальной сети может передаваться самая разная цифровая информация: данные, изображения, телефонные разговоры, электронные письма и т.д. Кстати, именно задача передачи изображений, особенно полноцветных динамических, предъявляет самые высокие требования к быстродействию сети. Чаще всего локальные сети используются для разделения (совместного использования) таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это всего лишь незначительная часть тех возможностей, которые предоставляют средства локальных сетей. Например, они позволяют осуществлять обмен информацией между компьютерами разных типов. Полноценными абонентами (узлами) сети могут быть не только компьютеры, но и другие устройства, например, принтеры, плоттеры, сканеры. Локальные сети дают также возможность организовать систему параллельных вычислений на всех компьютерах сети, что многократно ускоряет решение сложных математических задач. С их помощью, как уже упоминалось, можно управлять работой технологической системы или исследовательской установки с нескольких компьютеров одновременно.


2.1.2 Архитектурный принцип построения сетей

Архитектурный принцип построения сетей (за исключением одноранговых сетей, в которых компьютеры равноправны) называется "клиент – сервер".

В одноранговой сети все компьютеры равноправны. Каждый из них может выступать как в роли сервера, т. е. предоставлять файлы и аппаратные ресурсы (накопители, принтеры и пр.) другим компьютерам, так и в роли клиента, пользующегося ресурсами других компьютеров. Например, если на вашем компьютере установлен принтер, то с его помощью смогут распечатывать свои документы все остальные пользователи сети, а вы, в свою очередь, сможете работать с Интернетом, подключение к которому осуществляется через соседний компьютер.

Важнейшими понятиями теории сетей "клиент-сервер" являются "абонент", "сервер", "клиент".

Абонент (узел, хост, станция) - это устройство, подключенное к сети и активно участвующее в информационном обмене. Чаще всего абонентом (узлом) сети является компьютер, но абонентом также может быть, например, сетевой принтер или другое периферийное устройство, имеющее возможность напрямую подключаться к сети.

Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Серверов в сети может быть несколько, и совсем не обязательно, что сервер - самый мощный компьютер. Выделенный (dedicated) сервер - это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи. Специфический тип сервера - это сетевой принтер.

Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает, а он ей только пользуется. Компьютер-клиент также часто называют рабочей станцией. В принципе каждый компьютер может быть одновременно как клиентом, так и сервером .

Под сервером и клиентом часто понимают также не сами компьютеры, а работающие на них программные приложения. В этом случае то приложение, которое только отдает ресурс в сеть, является сервером, а то приложение, которое только пользуется сетевыми ресурсами — клиентом.


2.1.3 Топология локальных сетей

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.

Существует три, базовые топологии сети:

а) топология шина

Шина (bus) — все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам ( рис. 1 ).



Рис. 1 Сетевая топология шина


Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта, коллизии ). В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии шина отсутствует явно выраженный центральный абонент, через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями.

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.



Рис. 2. Обрыв кабеля в сети с топологией шина


Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи . Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов — репитеров или повторителей (на рис. 3 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 L пр, так как каждый из сегментов может быть длиной L пр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.



Рис. 3. Соединение сегментов сети типа шина с помощью репитера


б) топология звезда;

Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 4). Информация от периферийного компьютера передается только центральному компьютеру, от центрального — одному или нескольким периферийным.



Рис. 4. Сетевая топология звезда


Звезда — это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов . О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка. Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8—16 периферийных абонентов . В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 4, носит название активной или истинной звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду (рис. 5). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство — концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер, то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи.


Рис. 5. Топология пассивная звезда и ее эквивалентная схема


Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную шину, которая считается малоперспективной топологией.

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

в) топология кольцо;

Кольцо (ring) ( рис. 6 ).



Рис. 6. Сетевая топология кольцо


Кольцо — это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов.

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие — позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.



Рис. 7. Сеть с двумя кольцами


Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях. Цель подобного решения — увеличение (в идеале — вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

д) др. топологии.

На практике нередко используют и другие топологии локальных сетей, однако большинство сетей ориентировано именно на три базовые топологии.

Топология сети указывает не только на физическое расположение компьютеров, но и на характер связей между ними, особенности распространения информации, сигналов по сети. Именно характер связей определяет степень отказоустойчивости сети, требуемую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможные типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов ) необходимость электрического согласования и многое другое.

Более того, физическое расположение компьютеров, соединяемых сетью, почти не влияет на выбор топологии. Как бы ни были расположены компьютеры, их можно соединить с помощью любой заранее выбранной топологии (рис. 8).

В том случае, если соединяемые компьютеры расположены по контуру круга, они могут соединяться, как звезда или шина. Когда компьютеры расположены вокруг некоего центра, их допустимо соединить с помощью топологий шина или кольцо.

Наконец когда компьютеры расположены в одну линию, они могут соединяться звездой или кольцом. Другое дело, какова будет требуемая длина кабеля.



Рис. 8. Примеры использования разных топологий


Необходимо отметить, что топология все-таки не является основным фактором при выборе типа сети. Гораздо важнее, например, уровень стандартизации сети, скорость обмена, количество абонентов, стоимость оборудования, выбранное программное обеспечение. Но, с другой стороны, некоторые сети позволяют использовать разные топологии на разных уровнях. Этот выбор уже целиком ложится на пользователя, который должен учитывать все перечисленные в данном разделе соображения.


2.2 Глобальные сети


2.2.1 Характеристика глобальной сети

Глобальная сеть соединяет компьютеры, находящиеся в разных частях города, в разных городах и странах, на разных континентах.

Глобальные сети Wide Area Networks, WAN), которые также называют территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству конечных абонентов, разбросанных по большой территории - в пределах области, региона, страны, континента или всего земного шара. Ввиду большой протяженности каналов связи, построение глобальной сети требует очень больших затрат, в которые входит стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также эксплуатационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети.

Типичными абонентами глобальной компьютерной сети являются локальные сети предприятий, расположенные в разных городах и странах, которым нужно обмениваться данными между собой. Услугами глобальных сетей пользуются также и отдельные компьютеры.

Глобальные сети обычно создаются крупными телекоммуникационными компаниями для оказания платных услуг абонентам. Существуют такие понятия, как оператор сети и поставщик услуг сети. Оператор сети (network operator) - это та компания, которая поддерживает нормальную работу сети. Поставщик услуг, часто называемый также провайдером (service provider), - та компания, которая оказывает платные услуги абонентам сети.

Гораздо реже глобальная сеть полностью создается какой-нибудь крупной корпорацией (такой, например, как Dow Jones или "Транснефть") для своих внутренних нужд. В этом случае сеть называется частной.

Ввиду большой стоимости глобальных сетей существует долговременная тенденция создания единой глобальной сети, которая может передавать данные любых типов: компьютерные данные, телефонные разговоры, факсы, телеграммы, телевизионное изображение, телетекс (передача данных между двумя терминалами), видеотекс (получение хранящихся в сети данных на свой терминал) и т. д., и т. п. Тем не менее каждая из технологий, как компьютерных сетей, так и телефонных, старается сегодня передавать "чужой" для нее трафик с максимальной эффективностью, а попытки создать интегрированные сети на новом витке развития технологий продолжаются под преемственным названием Broadband ISDN (B-ISDN), то есть широкополосной (высокоскоростной) сети с интеграцией услуг. Сети B-ISDN будут основываться на технологии АТМ, как универсальном транспорте, и поддерживать различные службы верхнего уровня для распространения конечным пользователям сети разнообразной информации - компьютерных данных, аудио- и видеоинформации, а также организации интерактивного взаимодействия пользователей.

Хотя в основе локальных и глобальных вычислительных сетей лежит один и тот же метод - метод коммутации пакетов, глобальные сети имеют достаточно много отличий от локальных сетей.


2.2.2 Структура глобальной сети

Типичный пример структуры глобальной компьютерной сети приведен на рис. 9. Здесь используются следующие обозначения: S (switch) - коммутаторы, К - компьютеры, R (router) - маршрутизаторы, MUX (multiplexor)- мультиплексор, UNI (User-Network Interface) - интерфейс пользователь - сеть и NNI (Network-Network Interface) - интерфейс сеть - сеть. Кроме того, офисная АТС обозначена аббревиатурой РВХ, а маленькими черными квадратиками - устройства DCE,о которых будет рассказано ниже.



Рис. 9. Пример структуры глобальной сети


Сеть строится на основе некоммутируемых (выделенных) каналов связи, которые соединяют коммутаторы глобальной сети между собой. Коммутаторы называют также центрами коммутации пакетов (ЦКП), то есть они являются коммутаторами пакетов.

Коммутаторы устанавливаются в тех географических пунктах, в которых требуется ответвление или слияние потоков данных конечных абонентов или магистральных каналов, переносящих данные многих абонентов. Естественно, выбор мест расположения коммутаторов определяется многими соображениями, в которые включается также возможность обслуживания коммутаторов квалифицированным персоналом, наличие выделенных каналов связи в данном пункте, надежность сети, определяемая избыточными связями между коммутаторами.

Абоненты сети подключаются к коммутаторам в общем случае также с помощью выделенных каналов связи. Эти каналы связи имеют более низкую пропускную способность, чем магистральные каналы, объединяющие коммутаторы, иначе сеть бы не справилась с потоками данных своих многочисленных пользователей. Для подключения конечных пользователей допускается использование коммутируемых каналов, то есть каналов телефонных сетей, хотя в таком случае качество транспортных услуг обычно ухудшается. Принципиально замена выделенного канала на коммутируемый ничего не меняет, но вносятся дополнительные задержки, отказы и разрывы канала по вине сети с коммутацией каналов, которая в таком случае становится промежуточным звеном между пользователем и сетью с коммутацией пакетов.


2.2.3 Типы глобальных сетей

Приведенная на рис. 6.2 глобальная вычислительная сеть работает в наиболее подходящем для компьютерного трафика режиме - режиме коммутации пакетов. Оптимальность этого режима для связи локальных сетей доказывают не только данные о суммарном трафике, передаваемом сетью в единицу времени, но и стоимость услуг такой территориальной сети. Обычно при равенстве предоставляемой скорости доступа сеть с коммутацией пакетов оказывается в 2-3 раза дешевле, чем сеть с коммутацией каналов, то есть публичная телефонная сеть.

Поэтому при создании корпоративной сети необходимо стремиться к построению или использованию услуг территориальной сети со структурой, подобной структуре, приведенной на рис. 6.2, то есть сети с территориально распределенными коммутаторами пакетов.

Однако часто такая вычислительная глобальная сеть по разным причинам оказывается недоступной в том или ином географическом пункте. В то же время гораздо более распространены и доступны услуги, предоставляемые телефонными сетями или первичными сетями, поддерживающими услуги выделенных каналов. Поэтому при построении корпоративной сети можно дополнить недостающие компоненты услугами и оборудованием, арендуемыми у владельцев первичной или телефонной сети.

В зависимости от того, какие компоненты приходится брать в аренду, принято различать корпоративные сети, построенные с использованием:

выделенных каналов;

коммутации каналов;

коммутации пакетов.

Последний случай соответствует наиболее благоприятному случаю, когда сеть с коммутацией пакетов доступна во всех географических точках, которые нужно объединить в общую корпоративную сеть. Первые два случая требуют проведения дополнительных работ, чтобы на основании взятых в аренду средств построить сеть с коммутацией пакетов.

а) выделенные каналы;

Выделенные (или арендуемые - leased) каналы можно получить у телекоммуникационных компаний, которые владеют каналами дальней связи (таких, например, как "РОСТЕЛЕКОМ"), или от телефонных компаний, которые обычно сдают в аренду каналы в пределах города или региона.

Использовать выделенные линии можно двумя способами. Первый состоит в построении с их помощью территориальной сети определенной технологии, например frame relay, в которой арендуемые выделенные линии служат для соединения промежуточных, территориально распределенных коммутаторов пакетов, как в случае, приведенном на рис. 10.

Второй вариант - соединение выделенными линиями только объединяемых локальных сетей или конечных абонентов другого типа без установки транзитных коммутаторов пакетов, работающих по технологии глобальной сети (рис. 6.4). Второй вариант является наиболее простым с технической точки зрения, так как основан на использовании маршрутизаторов или удаленных мостов в объединяемых локальных сетях и отсутствии протоколов глобальных технологий. По глобальным каналам передаются те же пакеты сетевого или канального уровня, что и в локальных сетях.



Рис. 10. Использование выделенных каналов


Именно второй способ использования глобальных каналов получил специальное название "услуги выделенных каналов", так как в нем действительно больше ничего из технологий собственно глобальных сетей с коммутацией пакетов не используется.

Выделенные каналы очень активно применялись совсем в недалеком прошлом и применяются сегодня, особенно при построении ответственных магистральных связей между крупными локальными сетями, так как эта услуга гарантирует пропускную способность арендуемого канала. Однако при большом количестве географически удаленных точек и интенсивном смешанном трафике между ними использование этой службы приводит к высоким затратам за счет большого количества арендуемых каналов.

б) глобальные сети с коммутацией каналов;

Сегодня для построения глобальных связей в корпоративной сети доступны сети с коммутацией каналов двух типов - традиционные аналоговые телефонные сети и цифровые сети с интеграцией услуг ISDN. Достоинством сетей с коммутацией каналов является их распространенность, что характерно особенно для аналоговых телефонных сетей.

Телефонные сети, полностью построенные на цифровых коммутаторах, и сети ISDN свободны от многих недостатков традиционных аналоговых телефонных сетей. Они предоставляют пользователям высококачественные линии связи, а время установления соединения в сетях ISDN существенно сокращено.

Однако даже при качественных каналах связи, которые могут обеспечить сети с коммутацией каналов, для построения корпоративных глобальных связей эти сети могут оказаться экономически неэффективными. Так как в таких сетях пользователи платят не за объем переданного трафика, а за время соединения, то при трафике с большими пульсациями и, соответственно, большими паузами между пакетами оплата идет во многом не за передачу, а за ее отсутствие. Это прямое следствие плохой приспособленности метода коммутации каналов для соединения компьютеров.

Тем не менее, при подключении массовых абонентов к корпоративной сети, например сотрудников предприятия, работающих дома, телефонная сеть оказывается единственным подходящим видом глобальной службы из соображений доступности и стоимости (при небольшом времени связи удаленного сотрудника с корпоративной сетью).

в) глобальные сети с коммутацией пакетов.

В 80-е годы для надежного объединения локальных сетей и крупных компьютеров в корпоративную сеть использовалась практически одна технология глобальных сетей с коммутацией пакетов - Х.25. Сегодня выбор стал гораздо шире. Можно воспользоваться услугами территориальных сетей TCP/IP, которые доступны сегодня как в виде недорогой и очень распространенной сети Internet, так и в виде коммерческих глобальных сетей TCP/IP, изолированных от Internet и предоставляемых в аренду телекоммуникационными компаниями.

В Интернет все данные пересылаются в виде пакетов. Пакет – это специальная последовательность бит, несущих собственно данные, а также служебную информацию об адресах получателя и отправителя информации, номере пакета, коды для проверки его целостности и другие. Общая длина пакета составляет от 100 до 2000 байт.

Каждый пакет может продвигаться по сети своим маршрутом, что делает сеть не зависимой от аварии или блокировки отдельного узла. Перенаправлением пакетов в зависимости от нагрузки сети занимаются маршрутизаторы. А временное хранение пакетов в местах пересылки позволяет выполнить проверку их целостности и перезапросить поврежденные пакеты.


2.2.4 Пример глобальной сети – Интернет

Интернет – это всемирная информационная компьютерная сеть, которая объединяет в единое целое множество компьютерных сетей и отдельных компьютеров, предоставляющих обширную информацию в общее пользование и не является коммерческой организацией.

Компьютер пользователя с помощью линии связи подключается к компьютеру провайдера, который, в свою очередь подключен к другому компьютеру сети и т.д. Информация в сети хранится как на компьютерах провайдера, так и на специальных компьютерах, которые называются информационными серверами. Компьютеры, к которым подключаются многие другие компьютеры называют серверами. Провайдером называется организация, через которую рядовые компьютеры подключаются к глобальной сети.

Пользователи в Интернет работают по единым правилам.В качестве общего языка в сети Интернет используются протоколы обмена данными. Протоколы - это стандарты, определяющие формы представления и способы пересылки сообщений, процедуры их интерпретации, правила совместной работы различного оборудования в сетях.

Протокол – это правила взаимодействия. Например, дипломатический протокол предписывает, как поступать при встрече зарубежных гостей или при проведении приемов. Сетевой протокол предписывает правила работы компьютерам, которые подключены к сети. Стандартные протоколы заставляют разные компьютеры "говорить на одном языке". Таким образом осуществляется возможность подключения к Интернет разнотипных компьютеров (IBM, Macintosh), работающих под управлением различных операционных систем (Windows, UNIX, MS DOS).

Следует отметить децентрализованную структуру этой сети. В мире нет центрального управляющего органа, следящего за размещаемой в Internet информацией. Эту роль выполняют различные подключенные к Internet сети, которые и определяют, какая информация будет в ней размещаться и как она будет передаваться. Такая полностью распределенная структура делает Internet очень гибкой и предоставляет возможность поддерживать неограниченное количество пользователей. Однако подключенные к Internet сети должны удовлетворять определенным стандартам. Эти стандарты утверждаются несколькими добровольными организациями. Например, Совет по архитектуре Internet (Internet Architecture Board — IAB) рассматривает и утверждает протоколы передачи и стандарты нумерации. Комитент по технологическим нормам Internet устанавливает стандарты повседневной работы сети. Союз Internet публикует различные стандарты и осуществляет координацию между различными контролирующими органами Internet, провайдерами услуг и пользователями.

Основу сети Интернет составляет группа протоколов TCP/IP.

Протокол TCP (Transmission Control Protocol) – транспортного уровня, он управляет тем, как происходит передача информации (данные "нарезаются" на пакеты и маркируются).

IP (Internet Protocol) – протокол сетевого уровня, добавляет к пакету IP-адреса получателя и отравителя и отвечает на вопрос, как проложить маршрут для доставки информации.

Каждый компьютер, включенный в сеть – хост, имеет свой уникальный IP-адрес. Этот адрес выражается четырьмя байтами, например: 234.049.122.201, и регистрируется в Информационном центре сети– InterNIC или в Network Solutions Inc (NSI). Организация IP-адреса такова, что каждый компьютер, через который проходит TCP-пакет, может определить, кому из ближайших "соседей" его нужно переслать.

Для удобства пользователей в Интернет введена доменная адресация. Домены – группы компьютеров, имеющие единое управление и образующие иерархическую структуру. Доменное имя отражает иерархию доменов и состоит из сегментов, разделенных точкой. Например, interweb.spb.ru – адрес электронной справочной системы в Санкт-Петербурге. Самый последний (справа) называется именем домена верхнего уровня. Среди них различают географические и тематические.

Географические адреса, чаще двухбуквенные, определяют принадлежность владельца имени к сети определенной страны. Например, ru – Россия, de – Германия, us – Соединенные Штаты и др.

Тематические адреса, обычно трех- и четырехбуквенные, позволяют определить сферу деятельности их владельцев. Например,edu – образовательные учреждения, com – коммерческие организации, store – Интернет-магазины.

Для установления соединения между компьютерами в сети нужно знать адрес домена, включающего этот компьютер.


3. Вывод


Существуют 2 способа передачи информации между компьютерами:

С помощью носителей информации: магнитных дисков и магнитных лент, оптических дисков и т.д. (недостатки – медленный и неудобный).

С помощью линий связи: локальных или глобальных.

Глобальные сети распространяют свое действие по всему миру и используют все каналы связи, включая спутниковые.

В крупных коммерческих и образовательных организациях для ведения работ активно используются локальные сети, построенные на основе единых стандартов, принятых в глобальных сетях. В зависимости от решаемых задач и мероприятий, обеспечивающих безопасность работы и доступ к сети, их разделяют на внутренние (Intranet) и внешние (Extranet) корпоративные сети.

При создании компьютерных сетей является важным обеспечение совместимости по электрическим и механическим характеристикам и совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных.


4. Список используемой литературы


1. Ю. Шафрин, "Основы компьютерной технологии". М., АБФ, 2002

2. А.М. Кенин, Н.С. Печенкина, "IBM PC для пользователей или как научится работать на компьютере". Екатеринбург, "АРД ЛТД", 1999

3. "Навигатор игрового мира", №№ 3(11), 4(12), 7(15), 2004

4. http://www.dokanet.net/

5. http://ovt.edurm.ru/komseti.htm



Нравится материал? Поддержи автора!

Ещё документы из категории информатика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ