Предметна область системного аналізу Основні поняття системного аналізу
МІНІСТЕРСТВО ОСВІТИ І НАУКИ
НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ „ЛЬВІВСЬКА ПОЛІТЕХНІКА”
Кафедра інформаційних
систем та мереж
Практична робота №1
на тему:
ПРЕДМЕТНА ОБЛАСТЬ СИСТЕМНОГО АНАЛІЗУ. ОСНОВНІ ПОНЯТТЯ СИСТЕМНОГО АНАЛІЗУ
Львів-2009р.
Назва роботи:
Предметна область системного аналізу. Основні поняття системного аналізу
Мета роботи:
Ознайомитись з предметною областю системного аналізу та вивчити теоретичні відомості.
Короткі теоретичні відомості:
У процесі вивчення системного аналізу важливо передусім проаналізувати причини і фактори, що зумовили можливість його становлення й розвитку як універсальної наукової методології, зрозуміти роль і місце системного аналізу в сучасних галузях наукових знань, у різних сферах практичної діяльності, а також виявити міру його впливу на розвиток суспільства.
Необхідність такого підходу обумовлена видатними досягненнями ХХ століття, зокрема освоєнням космосу; розробкою й масовим впровадженням обчислювальної техніки, інформаційних технологій і світової мережі Інтернет; швидким розвитком і широким застосуванням авіацій; дослідженням ядерних процесів, освоєнням і розвитком атомної енергетики. Стрімкий розвиток наукомістких технологій і технічного оснащення в різних галузях виробництва й обслуговування, враховуючи медицину, фармакологію, генну інженерію, низка інших найбільших досягнень науково- технічного прогресу увійшли в історію цивілізації як результат погодженої взаємодії науки, освіти і промисловості. Усі ці досягнення зробили свій вагомий внесок різні науки, які охоплюють багато галузей знань і різні історичні періоди. Це були науки, що зародилися у Стародавньому світі, і науки, формування яких почалося лише у ХХ столітті. До останніх поряд з іншими новітніми напрямами, такими як кібернетика, дослідження операцій, загальна теорія систем, системотехніка, теорія прийняття рішень, теорія оптимізації, належить і системний аналіз.
Системне мислення – це вища форма людського пізнання, коли процеси відображення об’єктивної реальності базуються на цілісному відображені досліджуваного об’єкта з позиції досягнення поставлених цілей дослідження на підставі знань, досвіду, інтуїції і передбачення. Принципово важливою деталлю цього означення є залежність меж об’єкта дослідження від поставлених цілей.
Середовище – зовнішнє оточення людини та об’єкта дослідження (природне середовище, зовнішні об’єкти, що залежать від розглянутого об’єкта або взаємодіють із ним).
Людина – розробник, виробник, користувача, продавець чи покупець об’єкта або фахівець-дослідник відповідної предметної галузі, до якої належить досліджуваний об’єкт.
Відповіді на контрольні питання:
Системний аналіз — вивчення об'єкта дослідження як сукупності елементів, що утворюють систему. У наукових дослідженнях він передбачає оцінку поведінки об'єкта як системи з усіма факторами, які впливають на його функціонування. Цей метод широко застосовується у наукових дослідженнях при комплексному вивченні діяльності виробничих об'єднань і галузі в цілому, визначенні пропорцій розвитку галузей економіки тощо.
Системне мислення – це вища форма людського пізнання, коли процеси відображення об’єктивної реальності базуються на цілісному відображені досліджуваного об’єкта з позиції досягнення поставлених цілей дослідження на підставі знань, досвіду, інтуїції і передбачення. Принципововажливою деталлю цього означення є залежність меж об’єкта дослідження від поставлених цілей.
Системний аналітик – Людина яка стежить за станом системи. І досліджує систему.
Предметна область системного аналізу зводиться до вивчення складних багаторівневих множин систем різної природи та різних видів і класів з різноманітними властивостями і відношеннями між ними. Вона настільки широка, що не підлягає строгій та однозначній класифікації й впорядкуванню. Методи системного дослідження як способи чи шляхи практичного або теоретичного пізнання явищ і закономірностей функціонування і розвитку складних систем є досить різноманітними і не обмежуються будь-якими рамками.
A×B={(a,b) |a∈A,b∈B} - прямий добуток множин.
A∪B={x|x∈A∨x∈B} - поєднання множин.
A∩B={x|x∈A∧x∈B} - перетин множин.
A\B={x|x∈A∧x∉B} - різниця множин.
∅ - пуста множина.
U - універсальна множина.
A=U\A={x|x∉A} - доповнення множини.
Будь-який заданий клас абстрактних об’єктів може мати декілька можливих представлень, та вибір найкращого з них основним чином залежить від того, яким чином об’єкт буде використаний, а також від типу здійснених над ним операцій.
В алгоритмах на дискретних структурах часто ми зустрічаємось з представленням кінцевих послідовностей та операціями з ними. З обчислювальної точки зору простішим представленням кінцевої послідовності 1 2 , , ,n s s … s є точний список її членів, які знаходяться по порядку в суміжних комірках пам’яті.
Мережа Петрі складається з чотирьох елементів: скінченної множини позицій Р = {p1, p2,..., pn}, множини переходів Т = {t1, t2,..., tm}, вхідної функції І:T→P, і вихідної функції О:T→P.
Майже всі машинні представлення дерев основані на зв’язних розподілах. Кожний вузол складається із поля даних та деяких полів для вказівників. В наступному прикладі представлені дерев кожний вузол має по три поля вказівників.
Дерево досягальності мережі Петрі є ілюстрацією множини досягальності R(C, μ). Оскільки в багатьох випадках множина досягальності є нескінченною, то існують певні правила, які дозволяють відобразити її скінченним деревом досягальності.
Поставновка задачі:
Потрібно за даними в методичці знайти розширену вхідну і вихідну функції мережі Петрі. Також зобразити граф мережі Петрі, дерево досяжності глибини 3. Написати програму яка повинна шукати розширену вхідну і вихідну функції за вхідними даними і будувати дерево досяжності.
Вхідні дані:
I(t1) = { p4, p2 , p3 }; O(t1) = { p4, p3, p4 , p3, p3 , p4, p1 };
I(t2) = { p2, p3, p3 , p3 }; O(t2) = { p3, p1, p2, p4, p4 };
I(t3) = { p4, p3 }; O(t3) = { p1, p4};
I(t4) = { p4, p2 p2, p4 ,p4 p3, p2 }; O(t4) = { p2, p2 };
μ0 = {5,5,5,5}.
Хід виконання роботи:
Ознайомитись з теоретичними відомості, які подані в цій методичці. Реалізувати на мовах Pascal або С програми зв’язного формування списку елементів послідовності згідно номеру варіанту.Програма повинна шукати розширену вхідну і вихідну функцію і будувати дерево досяжності глибини 3. Розв’язати завдання відповідно до свого порядкового номеру у списку групи. Завдання отримати у викладача. При оформленні лабораторної роботи дотримуватись вимог, які наведені в методичних вказівках.
Розширена вхідна і вихідна функції:
I(p1)={t1,t2,t3}
I(p2)={t2,t4,t4}
I(p3)={t1,t1,t1,t2}
I(p4)={t1,t1,t1,t2,t2,t3}
O(p1)={}
O(p2)={t1,t2,t4,t4,t4}
O(p3)={t1,t2,t2,t2,t3,t4}
O(p4)={t1,t3,t4,t4,t4}
Граф мережі Петрі:
P1
t1
P2
P3
t3
P4
t2
t4
Маркування мережі Петрі:
P1
t1
P2
P3
t3
P4
t2
t4
Виконання мережі Петрі:
Запуск t1:
P1
t1
P2
P3
t3
6
P4
t2
t4
7
7
Запуск t2:
P1
t1
P2
P3
t3
7
P4
t2
t4
9
Запуск t3:
P1
t1
P2
P3
t3
8
P4
t2
t4
9
t4
Запуск t4:
P1
t1
P2
P3
t3
8
P4
t2
t4
6
Дерево досягальності глибини 3:
Код програми:
#include
#include
#pragma hdrstop
#include "Unit1.h"
#include "Unit2.h"
#include "Unit3.h"
//--------------------------------------------------------------------------
#pragma package(smart_init)
#pragma link "XPManifest"
#pragma link "acButtons"
#pragma resource "*.dfm"
#define n 4
TForm1 *Form1;
//---------------------------------------------------------------------------
struct TMT
{
int z;
int p[n];
int t[n];
};
TMT P[n], T[n]; int ccc[n],cc[n],c[n],b;
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner)
: TForm(Owner)
{
}
//---------------------------------------------------------------------------
void run()
{
P[0].z=StrToInt(Form1->StringGrid3->Cells[1][0]); T[0].z=0; ccc[0]=P[0].z;
P[1].z=StrToInt(Form1->StringGrid3->Cells[2][0]); T[1].z=0; ccc[1]=P[1].z;
P[2].z=StrToInt(Form1->StringGrid3->Cells[3][0]); T[2].z=0; ccc[2]=P[2].z;
P[3].z=StrToInt(Form1->StringGrid3->Cells[4][0]); T[3].z=0; ccc[3]=P[3].z;
int z;
for(z=0; z
{
for(int i=0; i
{P[z].t[i]=0; T[i].p[z]=0;
for(int j=0; jStringGrid1->ColCount; j++)
{
if((StrToIntDef(Form1->StringGrid2->Cells[j][i],0)))
if(z+1==StrToInt(Form1->StringGrid2->Cells[j][i]))P[z].t[i]++;
if((StrToIntDef(Form1->StringGrid1->Cells[j][i],0)))
if(z+1==StrToInt(Form1->StringGrid1->Cells[j][i]))T[i].p[z]++;
}}}}
//---------------------------------------------------------------------------
void search()
{ AnsiString p,p2,t,t2; int z,j,zz;
for(z=0; zStringGrid1->RowCount; z++)
{ p="I(p"+IntToStr(z+1)+")={";
t="O(p"+IntToStr(z+1)+")={";
for(j=0; jStringGrid2->RowCount; j++)
for(zz=0; zzStringGrid2->ColCount; zz++)
{
if((StrToIntDef(Form1->StringGrid2->Cells[zz][j],0)))
if(z+1==StrToInt(Form1->StringGrid2->Cells[zz][j]))
{
p2="t"+IntToStr(j+1)+",";
p+=p2;
}
if((StrToIntDef(Form1->StringGrid1->Cells[zz][j],0)))
if(z+1==StrToInt(Form1->StringGrid1->Cells[zz][j]))
{
t2="t"+IntToStr(j+1)+",";
t+=t2; }
}
if(p.Pos("t")) p[p.Length()]='}';else p+="}";
Form1->Memo1->Lines->Add(p);
if(t.Pos("t")) t[t.Length()]='}';else t+="}";
Form1->Memo2->Lines->Add(t);
}}
//=========================================================
void __fastcall TForm1::FormCreate(TObject *Sender)
{
for(int i=0; iStringGrid1->RowCount; i++)
{
StringGrid1->Cells[0][i]="I(t"+IntToStr(i+1)+")";
StringGrid2->Cells[0][i]="O(t"+IntToStr(i+1)+")";
}
StringGrid3->Cells[0][0]=" м";
StringGrid3->Cells[1][0]="5";
StringGrid3->Cells[2][0]="5";
StringGrid3->Cells[3][0]="5";
StringGrid3->Cells[4][0]="5";
}
//=========================================================
void spp(int i)
{
for(int j=0; j
if(T[i].p[j]&&T[i].p[j]>P[j].z) {b=0; break;}
if(b==1)
{
for(int j=0; j
{
T[i].z+=T[i].p[j];
P[j].z-=T[i].p[j];
}
for(int k=0; k
if(P[k].t[i]!=0&&T[i].z!=0)
P[k].z+=P[k].t[i];
}
}
void kpk()
{
for(int i=0; i
{
Form1->TreeView1->Items->AddChild(Form1->TreeView1->Items->Item[0],"0");
Form2->TreeView1->Items->AddChild(Form2->TreeView1->Items->Item[0],"0");
for(int j=0; j
{
Form1->TreeView1->Items->AddChild(Form1->TreeView1->Items->Item[0]->Item[i],"0");
Form2->TreeView1->Items->AddChild(Form2->TreeView1->Items->Item[0]->Item[i],"0");
for(int e=0; e
{
Form1->TreeView1->Items->AddChild(Form1->TreeView1->Items->Item[0]->Item[i]->Item[j],"0");
Form2->TreeView1->Items->AddChild(Form2->TreeView1->Items->Item[0]->Item[i]->Item[j],"0");
}}}}//---------------
//=======================================
int p1,p2,p3;
void run_5()
p1=-1;
AnsiString f="m("+IntToStr(P[0].z)+","+IntToStr(P[1].z)+","+IntToStr(P[2].z)+","+IntToStr(P[3].z)+")";
Form1->TreeView1->Items->Clear(); Form2->TreeView1->Items->Clear();
Form1->TreeView1->Items->Add(NULL,f); Form2->TreeView1->Items->Add(NULL,f);
Form1->TreeView1->Items->Item[0]->Text=f;
Form2->TreeView1->Items->Item[0]->Text=f;
kpk();
for(int i=n-1; i>-1; i--)
{b=1; T[i].z=0; p1++; p2=-1;
if(!Form1->CheckBox2->Checked) t1=p1; else t1=i;
P[0].z=ccc[0];
P[1].z=ccc[1];
P[2].z=ccc[2];
P[3].z=ccc[3];
spp(p1);
AnsiString f="t"+IntToStr(p1+1)+"("+IntToStr(P[0].z)+","+IntToStr(P[1].z)+","+IntToStr(P[2].z)+","+IntToStr(P[3].z)+")";
if(ccc[0]!=P[0].z||ccc[1]!=P[1].z||ccc[2]!=P[2].z||ccc[3]!=P[3].z)
{
Form1->TreeView1->Items->Item[0]->Item[t1]->Text=f;
Form2->TreeView1->Items->Item[0]->Item[t1]->Text=f;
cc[0]=P[0].z;
cc[1]=P[1].z;
cc[2]=P[2].z;
cc[3]=P[3].z;
}
else goto end;
for(int j=n-1; j>-1; j--)
{b=1; T[j].z=0; p2++; p3=-1;
if(!Form1->CheckBox2->Checked) t2=p2; else t2=j;
P[0].z=cc[0];
P[1].z=cc[1];
P[2].z=cc[2];
P[3].z=cc[3];
spp(p2);
AnsiString f="t"+IntToStr(p2+1)+"("+IntToStr(P[0].z)+","+IntToStr(P[1].z)+","+IntToStr(P[2].z)+","+IntToStr(P[3].z)+")";
if(cc[0]!=P[0].z||cc[1]!=P[1].z||cc[2]!=P[2].z||cc[3]!=P[3].z)
{
Form1->TreeView1->Items->Item[0]->Item[t1]->Item[t2]->Text=f;
Form2->TreeView1->Items->Item[0]->Item[t1]->Item[t2]->Text=f;
c[0]=P[0].z;
c[1]=P[1].z;
c[2]=P[2].z;
c[3]=P[3].z;
}
else goto end1;
for(int e=n-1; e>-1; e--)
{ b=1; T[j].z=0; p3++;
if(!Form1->CheckBox2->Checked) t3=p3; else t3=e;
P[0].z=c[0];
P[1].z=c[1];
P[2].z=c[2];
P[3].z=c[3];
spp(p3);
AnsiString f="t"+IntToStr(p3+1)+"("+IntToStr(P[0].z)+","+IntToStr(P[1].z)+","+IntToStr(P[2].z)+","+IntToStr(P[3].z)+")";
if(c[0]!=P[0].z||c[1]!=P[1].z||c[2]!=P[2].z||c[3]!=P[3].z)
{
Form1->TreeView1->Items->Item[0]->Item[t1]->Item[t2]->Item[t3]->Text=f;
Form2->TreeView1->Items->Item[0]->Item[t1]->Item[t2]->Item[t3]->Text=f;
} }
end1:
}end: }
void __fastcall TForm1::acBitBtn2Click(TObject *Sender)
{
int i=0,j=0;
p1=n; b=1; p1=n;
Memo1->Clear();
Memo2->Clear();
search();
run();
run_5();
}
Результати роботи програми:
Висновок:
Я ознайомився з предметною областю системного аналізу та вивчив теоретичні відомості. Виконав завдання, написав програму.

Нравится материал? Поддержи автора!
Ещё документы из категории информатика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ