Системы и методы искусственного интеллекта в экономике
КОНТРОЛЬНАЯ РАБОТА
По дисциплине: «Системы и методы искусственного интеллекта в экономике»
Задание 1
1. Выбираем массив финансовых показателей по которым будем оценивать финансовую устойчивость предприятия. Устанавливаем эталонные значения данных показателей в каждой группе риска в соответствие с предложенными диапазонами значений финансовых показателей:
x1
x2
x3
x4
Показатели
Эталоны
критическая зона
зона опасности
зона относительной стабильности
зона благо-получия
Коэф. абсолютной ликвидности
0,18
0,24
0,38
0,47
Коэф. оборачиваемости собст-венных средств
0,71
0,85
0,96
1,7
Коэф. обеспеченности денежных средств и расчетов
0,03
0,08
0,14
0,21
Рентабельность использования всего капитала
0,02
0,09
0,12
0,19
Рентабельность продаж
0,05
0,14
0,26
0,31
2. Задаем характеристики исследуемого предприятия. Веса показателям устанавливаются экспертами.
s
n
Показатели
Исследуемое предприятие
Вектор весов показателей (выбирается экспертами)
Коэф. абсолютной ликвидности
0,57
9
Коэф. оборачиваемости собст-венных средств
0.49
3
Коэф. обеспеченности денежных средств и расчетов
0,53
7
Рентабельность использования всего капитала
2,4
4
Рентабельность продаж
1,8
5
3. Рассчитываем разницу между составляющими векторов исследуемого предприятия и каждого эталонного образа:
(s-xi)
0,39
0,33
0,19
0,10
-0,22
-0,36
-0,47
-1,21
0,50
0,45
0,39
0,32
2,38
2,31
2,28
2,21
1,75
1,66
1,54
1,49
4. Рассчитываем квадрат разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа:
(s-xi)^2
0,1521
0,1089
0,0361
0,0100
0,0484
0,1296
0,2209
1,4641
0,2500
0,2025
0,1521
0,1024
5,6644
5,3361
5,1984
4,8841
3,0625
2,7556
2,3716
2,2201
5. Таким образом, расстояния по Эвклиду () между исследуемым предприятием и эталонными образами будут равны:
х1
х2
х3
х4
Расстояния по Эвклиду
9,1774
8,5327
7,9791
8,6807
Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х3 (зона относительной стабильности).
6. Рассчитываем разницу между составляющими векторов исследуемого предприятия и каждого эталонного образа, возведенную в степень λ=4:
(s-xi)^λ, λ=4
0,02313441
0,01185921
0,00130321
0,00010000
0,00234256
0,01679616
0,04879681
2,14358881
0,06250000
0,04100625
0,02313441
0,01048576
32,08542736
28,47396321
27,02336256
23,85443281
9,37890625
7,59333136
5,62448656
4,92884401
7. Таким образом, расстояния по Минковскому () между исследуемым предприятием и эталонными образами будут равны:
х1
х2
х3
х4
Расстояние по Минковскому
41,55231058
36,13695619
32,72108355
30,93745139
Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х4 (зона благополучия).
8. Рассчитываем модуль разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа:
|s-xi|
0,39
0,33
0,19
0,10
0,22
0,36
0,47
1,21
0,50
0,45
0,39
0,32
2,38
2,31
2,28
2,21
1,75
1,66
1,54
1,49
9. Таким образом, расстояния по модулю разницы () между исследуемым предприятием и эталонными образами будут равны:
х1
х2
х3
х4
Расстояние по модулю разности
5,24
5,11
4,87
5,33
Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х3 (зона относительной стабильности).
10. Рассчитываем произведение весов коэффициентов и квадрата разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа:
nj*(s-xi)^2
1,0647
0,7623
0,2527
0,0700
0,2904
0,7776
1,3254
8,7846
0,7500
0,6075
0,4563
0,3072
22,6576
21,3444
20,7936
19,5364
15,3125
13,7780
11,8580
11,1005
11. Таким образом, расстояния по Эвклиду с весами () между исследуемым предприятием и эталонными образами будут равны:
х1
х2
х3
х4
Расстояние по Эвклиду (c весами)
40,0752
37,2698
34,6860
39,7987
Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х3 (зона относительной стабильности).
12. Рассчитываем произведение весов коэффициентов и разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа, возведенной в степень λ=4:
nj*(s-xi)^λ, λ=4
0,16194087
0,08301447
0,00912247
0,0007
0,01405536
0,10077696
0,29278086
12,86153286
0,1875
0,12301875
0,06940323
0,03145728
128,3417094
113,8958528
108,0934502
95,41773124
46,89453125
37,9666568
28,1224328
24,64422005
13. Таким образом, расстояния по Минковскому с весами () между исследуемым предприятием и эталонными образами будут равны:
х1
х2
х3
х4
Расстояние по Минковскому (c весами)
175,5997369
152,1693198
136,5871896
132,9556414
Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х4 (зона благополучия).
14. Рассчитываем произведение весов коэффициентов и модулей разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа:
nj*|s-xi|
2,73
2,31
1,33
0,7
1,32
0,4752
0,223344
0,27024624
1,5
1,35
1,17
0,96
9,52
9,24
9,12
8,84
8,75
8,3
7,7
7,45
15. Таким образом, расстояния по модулю разницы с весами () между исследуемым предприятием и эталонными образами будут равны:
х1
х2
х3
х4
Расстояние по модулю разности (c весами)
23,82
21,6752
19,543344
18,22024624
Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х4 (зона благополучия).
16. Рассчитываем сумму между составляющими векторов исследуемого предприятия и каждого эталонного образа:
(s+xi)
0,75
0,24
0,77
0,80
1,20
0,85
0,74
1,34
0,56
0,08
0,64
0,66
2,42
0,09
2,50
2,50
1,85
0,14
2,01
1,97
17. Рассчитываем модуль отношения (s-xi)/(s+xi) для каждой составляющей векторов исследуемого предприятия и каждого эталонного образа:
|(s-xi)/(s+xi)|
0,52
1,375
0,246753
0,125
0,183333
0,423529
0,635135
0,902985
0,892857
5,625
0,609375
0,484848
0,983471
25,66667
0,912
0,884
0,945946
11,85714
0,766169
0,756345
18. Таким образом, расстояния по Камберру () между исследуемым предприятием и эталонными образами будут равны:
х1
х2
х3
х4
Расстояние по Камберру
3,525607
44,94734
3,169433
3,153179
Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х4 (зона благополучия).
ВЫВОД: В результате проведенного анализа можно сделать вывод о том, что уровень финансовой устойчивости исследуемого предприятия характеризуется относительной стабильностью и благополучием.
Задание 2
1. Задаем эталонные объекты, исследуемый образ и признаки, по которым будем оценивать сходство:
Вектор признаков
в него можно класть вещи
сделано преимущественно из одного материала
имеет дверцу
в него можно увидеть свое отражение
на нем сидят
окно
X1
да
да
нет
да
нет
шкаф
X2
да
да
да
нет
нет
стул
X3
да
да
нет
нет
да
диван
X4
да
нет
нет
нет
да
стол *
S
да
да
да
нет
нет
* Цветом выделен исследуемый образ.
2. Переводим качественные характеристики объектов в количественные. В результате формируется двоичный массив:
Вектор признаков
в него можно класть вещи
сделано преимущественно из одного материала
имеет дверцу
в него можно увидеть свое отражение
на нем сидят
окно
X1
1
1
0
1
0
шкаф
X2
1
1
1
0
0
стул
X3
1
1
0
0
1
диван
X4
1
0
0
0
1
стол *
S
1
1
1
0
0
3. Рассчитываем число совпадений наличия признаков объектов Xj, и S. Она может быть вычислена с помощью соотношения (n – количество признаков). Для этого используем функцию СУММПРОИЗВ, указывая в ней массивы векторов значений признаков исследуемого образа и каждого из эталонного образов.
Таким образом:
A (количество совпадений присутствия признаков у исследуемого объекта и эталона Xj)
окно
X1
2
шкаф
X2
3
стул
X3
2
диван
X4
1
4. С помощью переменной b подсчитывается число случаев, когда объекты Xj, и S . не обладают одним и тем же признаком, . Для упрощения расчетов необходимо рассчитать матрицу значений (1-xk) для всех исследуемых объектов:
(1-xk)
окно
X1
0
0
1
0
1
шкаф
X2
0
0
0
1
1
стул
X3
0
0
1
1
0
диван
X4
0
1
1
1
0
стол *
X5
0
0
0
1
1
Рассчитываем значение переменной b аналогично методу расчета переменной a, используя значения матрицы, полученной в п.4:
B (количество совпадений отсутствия признаков у исследуемого объекта и эталона Xj)
окно
X1
1
шкаф
X2
2
стул
X3
1
диван
X4
1
5. Аналогичным образом рассчитывает переменные g и h по формулам
, :
G
H
окно
X1
1
1
шкаф
X2
0
0
стул
X3
1
1
диван
X4
2
1
6. Проверяем правильность произведенных расчетов по формуле:
a + b + g + h = n
где n – количество анализируемых признаков (в нашем случае n = 5)
a
b
g
h
n
2
1
1
1
5
3
2
0
0
5
2
1
1
1
5
1
1
2
1
5
Следовательно, расчеты произведены верно.
7. Рассчитываем значения функций сходства с каждым эталонным образом по формулам Рассела и Рао, Жокара и Нидмена, Дайса, Сокаля и Снифа, Сокаля и Мишнера, Кульжинского, Юла:
(функция сходства Рассела и Рао),
(функция сходства Жокара и Нидмена),
(функция сходства Дайса),
(функция сходства Сокаля и Снифа),
(функция сходства Сокаля и Мишнера),
(функция сходства Кульжинского),
(функция сходства Юла).
Рассела и Рао
Жокара и Нидмена
Дайса
Сокаля и Снифа
Сокаля и Мишнера
Кульжинского
Юла
Эталоны
0,4
0,5
0,333333
0,333333
0,6
1
0,333333333
окно
0,6
1
0,5
1
1
#ДЕЛ/0!
1
шкаф
0,4
0,5
0,333333
0,333333
0,6
1
0,333333333
стул
0,2
0,25
0,2
0,142857
0,4
0,33333
-0,333333333
диван
При распознавании образов с помощью функций сходства, исследуемый образ можно отнести к эталону, если значение функции сходства между ними максимально. Следовательно, наиболее близким эталоном к исследуемому образу является «шкаф», «стул», «окно».
8. Рассчитаем расстояние по Хеммингу между исследуемым образом и эталонами Расстояние по Хеммингу между двумя двоичными векторами равно числу несовпадающих двоичных компонент векторов. Используя переменные g и h его можно рассчитать по следующей формуле:
SH = g + h
SH = g + h
Окно
X1
2
Шкаф
X2
0
Стул
Х3
2
Диван
X4
3
При распознавании образов с помощью вычисления расстояния между объектами в качестве критерия принятия решения о принадлежности к конкретному эталону используется минимальное расстояние от исследуемого образа до эталона. Согласно данному критерию, наиболее близким к исследуемому образу является эталон «шкаф», «стул», «окно».
ВЫВОД: В результате проведенного анализа, согласно всех используемых функций сходства и расстояния по Хеммингу, исследуемый образ «стол» имеет наибольшее сходство с эталоном «шкаф», «стул», «окно».
9. Используя знания о логическом смысле переменных a, b, g, h предлагаю следующий вариант функции сходства:
Используя её для оценивания сходства между исследуемым образом и эталонами, получим:
Эталоны
Предложенная функция
Окно
0,4
Шкаф
1
Стул
0,4
Диван
0,2
Как видим, результат предложенный функции совпадает с результатами функций Рассела и Рао, Жокара и Нидмена, Дайса, Сокаля и Снифа, Сокаля и Мишнера, Кульжинского, Юла, что свидетельствует о её достаточной достоверности.
Нравится материал? Поддержи автора!
Ещё документы из категории информатика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ