Дефокусировка. Сферическая аберрация 3 порядка. Кома и неизопланатизм

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ


Кафедра ЭТТ







РЕФЕРАТ

На тему:


«Дефокусировка. Сферическая аберрация 3 порядка. Кома и неизопланатизм»















МИНСК, 2008

  1. Дефокусировка


. (1)

Дефокусировка не приводит к нарушению гомоцентричности пучка (рисунок 1), а только свидетельствует о продольном смещении плоскости изображения.


S 'const

плоскость

изображения



Рисунок 1 – Дефокусировка


При дефокусировке все лучи на выходе оптической системы пересекаются в одной точке, но не в точке идеального изображения. Поэтому в случае дефокусировки продольная аберрация постоянна для всех лучей (для всех точек зрачка):

. (2)

Если дефокусировки нет, то плоскость изображения совпадает с плоскостью Гаусса (плоскостью идеального изображения). Чтобы избавиться от дефокусировки, нужно просто соответствующим образом передвинуть плоскость изображения.

При анализе аберраций оптических систем принято строить графики зависимости поперечной, продольной, и волновой аберраций от зрачковых координат. Если в оптической системе присутствует только дефокусировка, то эти графики будут выглядеть как показано на рисунке 2.

1

2

1

2

-1

y'






0

1

y

W


а) волновая аберрация

S '


б) продольная аберрация

в) поперечная аберрация



Рисунок 2 – Графики аберраций для расфокусировки

  1. Сферическая аберрация 3 порядка


. (3)

Сферическая аберрация приводит к тому, что лучи, выходящие из осевой точки предмета, не пересекаются в одной точке, образуя на плоскости идеального изображения кружок рассеяния (рис.3). Ею обладают все линзы со сферическими поверхностями. Чтобы ее устранить, необходимо сделать поверхности не сферическими. Сферическую аберрацию 3 порядка называют также первичной сферической аберрацией.




Рисунок – 3. Сферическая аберрация


Продольная и поперечная аберрации в этом случае определяются выражениями:

(4)

(5)

В простых положительных линзах сферическая аберрация 3 порядка отрицательна, а в отрицательных положительна. Графики волновой, продольной и поперечной аберраций в случае сферической аберрации 3 порядка представлены на рис.4.

1

2

1

2

-1

y'






0

1

y

W


а) волновая аберрация

S '


б) продольная аберрация

в) поперечная аберрация



Рисунок 4 - Графики аберраций для сферической аберрации 3 порядка

  1. Сферическая аберрация 5 порядка


. (5)

По характеру искажения гомоцентричности пучка лучей сферическая аберрация 5 порядка полностью аналогична сферической аберрации 3 порядка, только имеет более высокий порядок кривых на графиках поперечной и продольной аберраций.

В сложных системах сферические аберрации 3 и 5 порядков имеют разные знаки и могут взаимно компенсировать друг друга. На рис.5 представлен график оптимальной коррекции сферической аберрации 3 и 5 порядков для апертурного луча . В результате коррекции остаточные аберрации становятся меньше, чем сами аберрации 3 и 5 порядка.


SI IIIV


III

1

2

SV



Рисунок 5 - Взаимокомпенсация сферической аберрации 3 и 5 порядков


Однако в случае сферической аберрации 3 и 5 порядков может быть и так, как показано на рис.6.: а) – аберрация «недоисправлена», б) – аберрация «переисправлена».

1

2

1

2

ΔS '


a) недоисправленная сферическая аберрация

ΔS '


б) переисправленная сферическая аберрация



Рисунок 6 - Графики коррекции сферической аберрации.


Поскольку продольной дефокусировкой легко управлять путем перемещения плоскости изображения, то сочетая сферическую аберрацию и дефокусировку, можно выбрать наилучшее с точки зрения минимума главный луч сферической аберрации положение изображения. В частности, для сферической аберрации 3 порядка при помощи выражений (4), (5) можно вычислить положение изображения, в котором кружок рассеяния минимален. При этом продольное смещение изображения составляет 3/4 от продольной аберрации апертурного луча.

Кома


От греческого: kωμα – хвост, пучок волос.

Кома появляется при смещениях точки предмета с оси. Кома добавляется к другим аберрациям (например, к сферической), но мы будем рассматривать ее отдельно от других аберраций (рис.7).


верхний луч



главный луч

A'



A0 '

Δy 'k


y'

- y

A



Рисунок 7 - Структура пучка лучей при наличии комы.


В первом приближении кома прямо пропорциональна смещению предмета с оси. Если смещение равно нулю, то и кома равна нулю. Таким образом, поперечная аберрация при наличии комы прямо пропорциональна величине предмета:

, (6)


где  – коэффициент пропорциональности, определяющий качество аберрационной коррекции оптической системы (чем меньше , тем лучше оптическая система).

Разложение в ряд волновой аберрации при наличии комы 3 и 5 порядков:

(7)

или .

Выражение для поперечных аберраций будет выглядеть следующим образом:

. (8)

Описание поперечных аберраций комы различно для меридионального и сагиттального сечений. В меридиональном сечении , следовательно:

(9)

В сагиттальном сечении , следовательно:

. (10)

На рис.8 показаны графики поперечных аберраций для комы 3 порядка в меридиональном и сагиттальном сечениях. Кривые на графиках имеют одинаковую форму, но в меридиональном сечении значение в 3 раза больше, чем в сагиттальном.


y'

y

-1

0

1

y

-1

0

1

x

a) меридиональное сечение

б) сагиттальное сечение.



Рисунок 8 - Поперечные аберрации при коме 3 порядка


Для того чтобы лучше понять структуру поперечных аберраций при коме, рассмотрим точечную диаграмму лучей. Разобьем зрачок на множество равновеликих площадок и рассмотрим лучи, проходящие через центры этих площадок (рис.9.а). Получим картину лучей, равномерно распределенных по зрачку. Точки пересечения этих лучей с плоскостью изображения образуют точечную диаграмму (рис.9.б).


1

y

y'

60

1

x

y'k

а) плоскость зрачка

x'


б) плоскость изображения


Рисунок 9 - Точечная диаграмма

Кома и неизопланатизм


В названии “неизопланатизм” присутствуют корни греческих слов: изос – одинаковый, равный, планета – блуждающее тело.

Изопланатизм (одинаково заблуждающийся) – в окрестности оси оптической системы нет комы, но есть сферическая аберрация (изображение разных точек предмета будет одинаково плохое).

Апланатизм – нет ни комы, ни сферической аберрации (изображение разных точек предмета идеальное). Апланатизм может выполняться только для какой-то части предмета, например в окрестности оси.

О возможной величине комы можно судить, не смещая точку с оси, если количественно оценить неизопланатизм. Такая оценка возможна, если использовать условия апланатизма и изопланатизма.

Закон синусов Аббе (условие апланатизма):


. (11)

Если это условие выполняется для всех лучей, то нет ни комы, ни сферической аберрации.

Если присутствует сферическая аберрация, то вместо условия апланатизма используется похожее условие – условие изопланатизма:

. (12)

Рис. 10 показывает разницу в определении двух условий – условия синусов Аббе и условия изопланатизма.


-

0



'

плоскость

Гаусса




Рисунок 10 - Углы лучей, используемые в условиях апланатизма и изопланатизма.


Если условие изопланатизма выполняется, то комы в ближайшей окрестности осевой точки не будет. Относительное отступление от изопланатизма (так называемая мера комы) определяется следующим выражением:

. (13)

Поперечная аберрация комы 3 порядка для точки изображения с координатой может быть представлена следующим образом:

(14)

ЛИТЕРАТУРА


  1. Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. – М.: Машиностроение, 2004

  2. Заказнов Н.П. Прикладная оптика. – М.: Машиностроение, 2000

  3. Дубовик А.С. Прикладная оптика. – М.: Недра, 2002

  4. Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2002

Нравится материал? Поддержи автора!

Ещё документы из категории коммуникации, связь:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ