Схемотехника основных блоков радиопередающего устройства
Содержание
Реферат
1. Разработка структурной схемы передатчика
2. Общие сведения об автогенераторах
2.1. Расчет задающего автогенератора
3. Расчет умножителя частоты
4. Расчет усилителя мощности
Приложение 1
Приложение 2
Приложение 3
Заключение
Список литературы
Реферат
Целью данной работы является ознакомление со схемотехникой основных блоков радиопередающего устройства, с принципами их работы и методиками их расчета. В качестве изучаемого устройства взят передатчик радиолокационного маяка. Хотя схемы радиолокационных маяков постоянно совершенствуются, состав и расчёты основных блоков в них практически не изменился, изменилась только элементная база и новые схемотехнические решения построения этих блоков. Диапазон частот радиомаяков различен, существуют системы, использующие частоты, на которых работают штатные радиолокационные станции слежения и сопровождения. В данной работе мы рассмотрим структуру спасательного радиомаяка.
1. Разработка структурной схемы радиомаяка.
Передатчик радиомаяка излучает в пространство модулированные колебания с частотой 210МГц и мощностью28Вт. В передатчике осуществляется генерация заданной частоты и усиление.
Передатчик содержит следующие крупные узлы:
- кварцевый автогенератор с частотой кварца fкв
- умножитель частоты с коэффициентом умножения равным 3
- тракт усиления мощности рабочей частоты, осуществляющей
получение заданной мощности передатчика.
Задающий кварцевый генератор построен по схеме емкостной трехточки. Кварцевый резонатор включен между коллектором и базой коллектора.
Такая схема имеет ряд преимуществ:
1. обеспечивается высокая стабильность частоты
2. генератор имеет меньшую склонность к паразитной генерации на
частоте выше рабочей
3. схема построена без катушек индуктивности
4. частоту генератора можно менять в широком диапазоне путем смены
только кварцевого резонатора
Умножители частоты применяются в радиопередатчиках главным образом для переноса спектра стабилизированных кварцем низкочастотных колебаний в более высокий частотный диапазон. Кроме того, умножители частоты используются для углубления частотной и фазовой модуляции. Как правило, частота умножается в целое число раз (n), называемое кратностью умножения. В качестве нелинейного элемента используется варактор.
В передатчике использован импульсный модулятор.
Назначение тракта усиления состоит в повышении мощности колебания полученного от задающего генератора.
G
f
nf
Импульсный
модулятор
Тракт усиления мощности
Рис.1.1 Структурная схема радиомаяка
2. Общие сведения об автогенераторах
Автогенератор- это источник электромагнитных колебаний, колебания в котором
возбуждаются самопроизвольно без внешнего воздействия. Поэтому автогенераторы, в отличие от генераторов с внешним возбуждением (усилители мощности), часто называют генераторами с самовозбуждением.
В радиопередатчиках автогенераторы применяются в основном в качестве каскадов, задающих несущую частоту колебаний. Такие генераторы входят в состав возбудителя передатчика и называются задающими. Главное требование, предъявляемое к ним, - высокая стабильность частоты
Автогенератор.
Схема структурная.
Рис.2.1
Сбл1
R1
R2
Rбл
ZQ1
Сбл2
Rсм
С1
Скор
Rкор
С2
Ссв
Rн
VT
Рис.2.2 Принципиальная схема задающего генератора
2.1 Расчет задающего генератора
В качестве задающего генератора используем транзисторный АГ с кварцевой стабилизацией частоты (рис.1.2), работающий на частоте МГц.
2.2 Выбираем транзистор малой мощности КТ324А с граничной частотой =800 МГц.
Его паспортные данные сведены в Табл.1.1
Табл.1.1
,МГц
,пФ
,пФ
,В
В
,А
,пс
А/В
Вт
800
2.5
2.5
0.7
10
0.02
180
0.01
20
0.015
Вычисляем граничные частоты, используя формулы:
= 40 МГц
= 840 МГц
2.4 Расчет цепей коррекции.
Вычисляем граничную частоту:
= 40 МГц
Находим время жизни неосновных носителей в эмиттере:
= 2.16*с
Определяем активную часть коллекторной емкости
= 1.25 пФ
Определяем пользуясь формулой:
= 39 Ом
где Ом
Сопротивление, учитывающее сопротивление закрытого перехода:
= 80 Ом
Находим емкость коррекции:
= 4.9 пФ
согласно ряду выбираем пФ
Определяем общее сопротивление коррекции:
= 26 Ом
согласно ряду выбираем = 25 Ом
Так как выполняется условие Rкор < Rз , то корректирующая цепь
эффективна.
Крутизна с учетом коррекции равна:
= 0.038 А/В
2.5 Расчет электрического режима
Находим максимальное значение импульса тока коллектора:
= 0.016 А
Постоянное напряжение на коллекторе определяем по формуле:
= 3 В
Выбираем угол отсечки равным =60, находим значения
коэффициентов Берга
, ,
определяем
.
Значение коэффициента обратной связи выбираем
.
Расчет основных параметров генератора
Амплитуда первой гармоники тока коллектора:
= 0.0063 А
Амплитуда постоянной составляющей тока коллектора:
= 0.0035 А
Амплитуда первой гармоники напряжения базы:
= 0,8 В
Амплитуда первой гармоники напряжение коллектора:
= 0,8 В
Эквивалентное сопротивление контура:
127 Ом
Мощность первой гармоники:
= 0,0025 Вт
Потребляемая мощность:
= 0.01 Вт
Мощность рассеяния:
0.008 Вт
Проверяем условие
видно, что условие выполняется (0.008<0.015).
Вычисляем коэффициент полезного действия (КПД):
= 0.24%
Напряжение смещения:
0.2 В
Проверяем условие:
0.2-0,8 < 4В
Находим напряженность режима по формуле:
= 0.27
= 0.57
2.6 Расчет резонатора
Выбираем индуктивность с = 0,125 мкГн и с = 125
Находим характеристическое сопротивление контура
55 Ом
Суммарная емкость контура равна:
= 41 пФ
Резонансное сопротивление контура определяем по формуле:
= 6,9 кОм
Находим коэффициент включения контура
= 0.136
Определяем эквивалентную емкость контура
= 300 пФ
Емкость определяется из формулы:
= 300 пФ
принимаем =300пФ в соответствии со стандартным рядом емкостей и
в дальнейших расчетах используем именно это значение.
2.7 Расчет емкостей и .
Принимаем
= 380 Ом
Добротность последовательной цепочки
= 2.31
Определяем емкость связи:
= 16 пФ
принимаем =16 пФ в соответствии со стандартным рядом емкостей
Емкость, пересчитанную параллельно емкости определяем по
формуле:
= 13 пФ
Определяем емкость
= 290 пФ
принимаем =290 пФ в соответствии со стандартным рядом емкостей
2.8 Расчет цепи смещения
Напряжение на базе
= 2.66 В
Внутреннее сопротивление источника:
= 2.2 кОм
Находим сопротивления
= 330 Ом
принимаем=185 Ом в соответствии со стандартным рядом
сопротивлений
= 4.3 кОм
в соответствии с рядом выбираем =4.3 кОм
=4.4 кОм
в соответствии с рядом выбираем=4.4 кОм
Определяем номиналы блокировочных конденсаторов:
= 68.9пФ
в соответствии со стандартным рядом емкостей принимаем =70 пФ
= 0.022 мкФ
в соответствии со стандартным рядом емкостей принимаем =0.022 мкФ
2.9 Расчет цепи питания.
Находим значение сопротивления :
= 640 Ом
в соответствии со стандартным рядом выбираем =640Ом
Напряжение питания:
= 5,24 В
3.Умножители частоты
Умножители частоты применяются в радиопередатчиках главным образом для переноса спектра стабилизированных кварцем низкочастотных колебаний в более высокий частотный диапазон. Кроме того, умножители частоты используются для углубления частотной и фазовой модуляции. Как правило, частота умножается в целое число раз (n), называемое кратностью умножения.
Поскольку умножение частоты - существенно нелинейный процесс, в состав умножителя включают нелинейный элемент (НЭ). Структурная схема умножителя частоты представлена на рис.2.1
Умножитель частоты.
Схема структурная.
Рис.3.1
Lбл Rcм Сбл
L1 С1 VD L2 C2
+Eп
Рис.3.2 Принципиальная электрическая схема рассчитываемого
умножителя частоты.
3.1 Расчёт некоторых параметров варактора:
Электронный КПД умножителя с кратностью 3: =0.8
Мощность рассеяния Вт
3.2 Расчёт режима работы варактора
Находим барьерную емкость варактора по формуле:
= 0.768 пФ
где - напряжение, при котором измерена и указана справочнике
барьерная емкость .
Для варактора 2А602А она составляет =6.7 пФ при = 6 В.
Допустимое напряжение
=60 В.
-контактная разность потенциалов (=0.5..0.7 В).
Угол отсечки выбирают исходя из соотношения:
=60
Определяем нормированный коэффициент ряда Фурье:
= 0.01
Находим сопротивление варактора третьей гармонике:
= 112 Ом
значение М выбираем равным М=1.
Находим эквивалентное сопротивление потерь варактора, усредненное
по 3-ей гармонике:
= 3,2 Ом
где выбираем равным =0.5;
=1.6 Ом – сопротивление потерь внутри кристалла
Реальная часть полного сопротивления варактора на третьей гармонике
равна:
= 109 Ом
Амплитуду 3-ей гармоники тока определяем по формуле:
= 0.006 А
Находим произведение на амплитуду n-ой гармоники заряда:
= 1.36* Кл
Определяем амплитуду 1-ой гармоники заряда:
7.76* Кл
Определяем максимальное напряжение на варикапе:
= 3.88 В
Находим амплитуду 1-ой гармоники тока:
= 0.003 А
Сопротивление варактора первой гармонике тока:
= 196 Ом
Определяем эквивалентное сопротивление потерь по 1-ой гармонике:
= 2.0336 Ом
где:
Реальная часть полного сопротивления по первой гармонике равна:
= 198,0336 Ом
Мощность на первой гармонике:
0.0089 Вт
= 0.00097 Вт
где =100нс–среднее время жизни носителей заряда в базе диода
(справочные данные).
Определяем коэффициент полезного действия:
=0.76977 %
3.3 Расчет элементов схемы, задающих режим работы варактора
= 30,5 кОм
согласно ряду =31 кОм
где
Рассчитаем емкость блокировочного конденсатора:
Пусть = 0,1Ом, тогда пФ
Для расчета дросселя выбираем = 10кОм, тогда
3.4 Входной контур для частоты f = 70МГц
Выбираем индуктивность =0,125мкГн, тогда=41пФ
3.5 Выходной контур для частоты f = 210Мгц = 0,05мкГн
=12пФ
4. Расчёт усилителя мощности на биполярном транзисторе
Требуется рассчитать режим работы транзистора в схеме с ОЭ с мощностью первой гармоники 25 Вт на частоте 210 МГц
4.1 Выберем транзистор КТ930А. Его параметры:
900Мгц, 75Вт, 1А/В, 8пс, 60пФ, 800пФ,
6А, 50В, 4В, В=20, 0.24нГн, 1.42нГн,
1.6нГн 90є, 0.5, 0.318
1.5В, 25В.
4.2 Расчет режима работы транзистора:
Находим напряженность режима:
0.76
Находим амплитуду первой гармоники напряжения коллектора:
19В
Находим амплитуду первой гармоники коллекторного тока:
3А
Находим постоянную составляющую коллекторного тока:
1.9А
Определим полезную мощность:
28.5Вт
Определим потребляемую мощность:
47.5 Вт
Определим мощность рассеивания:
19Вт
Выполним проверку условия :
19Вт < 75Вт, следовательно транзистор работает нормально
Вычислим КПД:
60%
Определим амплитуду гармонического управляющего заряда:
2.857·10-9Кл
Рассчитаем минимальное мгновенное значение напряжения на эмиттерном переходе:
-2.1В
Выполним проверку условия :
|-2.1В |< 4В
Вычислим амплитуду постоянной составляющей напряжения на
эмиттерном переходе:
0.355В
Рассчитаем коллекторное сопротивление:
6.3Ом
Рассчитаем амплитуду первой гармоники суммарного тока базы:
0.4А
Рассчитаем корректирующий резистор:
2.21Ом
Рассчитаем часть входной мощности потребляемой в :
1.18Вт
Рассчитаем входное сопротивление:
0,635Ом
Рассчитаем часть мощности обусловленной прохождением мощности
в нагрузку через :
0.051Вт
Определим полную входную мощность:
1.231Вт
Определим коэффициент усиления:
23.19
Определим входную индуктивность:
1,64нГн
Рассчитаем входную ёмкость:
1709пФ
1.105Ом
4.3 Расчет элементов принципиальной схемы усилителя мощности
С3
VT
R1
R2
С1
С2
L2
С4
С6
С5
L3
Eп
Вход
Выход
L1
Рис.4.1 Принципиальная схема усилителя мощности
, ; 0.05мкФ
0,08мкГн; где 0,63
0,2В, где 2,21Ом; 0,0095А
24,8В
37Ом
40Ом
Рассчитаем выходную согласующую цепь:
18Ом, где 50Ом
С4=С6==4,2пФ
L3=0.14мкГн
Входная согласующая цепь:
35пФ, где , Q = 3; 65Ом
; , где 6,5Ом, отсюда
L1 = 2мкГн
Приложение 1.Спецификация к принципиальной схеме задающего генератора
Поз.
обозначение
Наименование
Кол – во
Примечание
С1
С2
Сбл1
Сбл2
Скор
Ссв
R1
R2
Rбл
Rкор
Rcм
ZQ1
VT
Конденсаторы ГОСТ
17597
КТ – Н70 – 300пФ±10%
КТ – Н70 – 290пФ±10%
КТ – Н70 – 70пФ±10%
КТ – Н70 – 0,022мкФ±10%
КТ – Н70 – 5пФ±10%
КТ – Н70 – 15пФ±10%
Резисторы ГОСТ 9664 – 74
МЛТ – 0,5 – 4,3кОм±10%
МЛТ – 0,5 – 4,4кОм±10%
МЛТ – 0,5 –640Ом±10%
МЛТ – 0,5 – 40Ом±10%
МЛТ – 0,5 – 330Ом±10%
Кварцевый резонатор
70МГц
Транзистор
КТ324
1
1
1
1
1
1
1
1
1
1
1
1
1
Приложение 2 Спецификация к принципиальной схеме умножителя частоты.
Поз.
обозначение
Наименование
Кол – во
Примечание
С1
С2
Cбл
Rсм
L1
L2
Lбл
VD
Конденсаторы ГОСТ
17597
КТ – Н70 – 2пФ±10%
КТ – Н70 – 12пФ±10%
КТ – Н70 –230пФ±10%
Резисторы ГОСТ 9664 – 74
МЛТ – 0,5 – 31кОм±10%
Катушки индуктивности
0,125мкГн
0,05мкГн
22мкГн
Варактор
2А602А
1
1
1
1
1
1
1
1
Приложение 3. Спецификация к принципиальной схеме усилителя мощности.
Поз.
обозначение
Наименование
Кол – во
Примечание
С1
С3
С5
С4
С6
С2
R1
R2
L1
L2
L3
VT
Конденсаторы ГОСТ
17597
КТ – Н70 – 0,05мкФ±10%
КТ – Н70 – 0,05мкФ±10%
КТ – Н70 – 0,05мкФ±10%
КТ – Н70 – 5пФ±10%
КТ – Н70 – 5пФ±10%
КТ – Н70 – 35пФ±10%
Резисторы ГОСТ 9664 – 74
МЛТ – 0,5 – 40Ом±10%
МЛТ – 0,5 – 40Ом±10%
Катушки индуктивности
2мкГн
0,08мкГн
0.15мкГн
Транзистор
КТ930А
1
1
1
1
1
1
1
1
1
1
1
1
Заключение
В данной работе разработана структурная схема радиомаяка, работающего на частоте 210МГц и выходной мощностью 28Вт. Рассчитаны задающий автогенератор с кварцевой стабилизацией частоты на биполярном транзисторе КТ324, рассчитан умножитель частоты с коэффициентом умножения 3 на варакторе 2А602А, также рассчитан усилитель мощности на биполярном транзисторе КТ930А.
Список литературы
1. Б.Е. Петров, В.А. Романюк Радиопередающие устройства на полупроводниковых приборах. -М.: Высшая школа,1989.
2. В.В. Шахгильдян, В.А. Власов, Козырев В.Б. Проектирование радиопередающих устройств. - М.: Радио и связь,1993.
3. Курс лекций по предмету «Устройства формирования сигналов» Преподаватель Тертышник В.В. Саратов:СГТУ
Нравится материал? Поддержи автора!
Ещё документы из категории коммуникации, связь:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ