Исследование прочности на разрыв полосок ситца

Министерство образования и науки РФ

Государственное образовательное учреждение

Высшего профессионального образования

Московской области

Международный Университет природы

общества и человека "Дубна"

Филиал "Котельники"

Кафедра естественных и гуманитарных наук.





Курсова робота

"Исследование прочности на разрыв полосок ситца"

по дисциплине:

"Теория вероятностей и математическая статистика"




Выполнила студентка

Второго курса 262 ЭТ группы

Проверила:

___________






2006 г.

Содержание




Введение


Математическая статистика - наука которая занимается разработкой методов отбора, группировки и обработки опытных данных с целью изучения закономерностей массовых случайных явлений.

Математическая статистика опирается на методы и понятия теории вероятностей и, в свою очередь, служит основой для обработки анализа статистических результатов в конкретных областях человеческой деятельности.

Задачи математической статистики:

нахождение функции распределения по опытным данным.

из теоретических соображений функция распределения оказывается в общем виде известна, но неизвестны её параметры. Неизвестные параметры определяются по опытным данным.

Статистическая проверка гипотез:

в общем виде известна функция распределения, определяют её неизвестные параметры и выясняют, как согласуются экспериментальные данные с общим видом функции распределения.

Цель курсовой работы


Целью курсовой работы является закрепление теоретических знаний и приобретения навыков обработки статистической информации.


Постановка задачи


В данной курсовой работе были поставлены следующие задачи для обработки статистических данных:

построение полигона частот и относительных частот

построение гистограммы частот и относительных частот

построение эмпирической функции распределения.

нахождение выборочной средней, выборочной дисперсии и

нахождение среднего выборочного квадратичного отклонения.

5) проверка гипотезы о нормальном распределении изучаемой случайной величины.


Исходные данные


Вариант 14. Прочность на разрыв полосок ситца (в дан):

32313432312932343331313432313532

34333130303232343131353234333231

34323129323433313134323135323433

31303432312932343331303232313632

34333130323331283234333130323330

35323433323031333033323433313032

33303132343331303233303132333331

30323330313233303433313032333031

3233

Распределение случайной величины на основе опытных данных


Для обработки опытных данных воспользуемся составлением статистического ряда. В первой строке записываются номера наблюдений, а во второй строке результаты наблюдений.

Если результаты наблюдений расположить в возрастающем порядке, то получим вариационный ряд.

Результат измерения называется - варианта.

Число появления каждой варианты называется частотой.

Отношение частоты к объему выборки называется относительной частотой.

xi - варианта (значение, полученное в процессе измерения)

ni - частота (сколько раз появилась каждая варианта)

Р*i - отношение частоты объёму выборки


xi

28

29

30

31

32

33

34

35

36

ni

1

3

18

29

32

24

18

4

1

ni

Pi* n

1

130

3

130

18

130

29

130

32

130

24

130

18

130

4

130

1

130


Существует вместо статистического ряда так называемая статистическая совокупность, для этого все наблюдаемые значения признака разбиваются на группы равной длины.


xi<x≤xi+1

(27; 29]

(29; 31]

(31; 33]

(33; 35]

(35; 37]

ni

4

47

56

22

1

Pi*

4/130

47/130

56/130

22/130

1/130


Размах колебания: хmin=28

хmax=36

R= 36-28=8

Статистическое распределение можно изобразить графически:

Либо в виде полигона частот, полигона относительных частот и в виде гистограммы частот, гистограммы относительных частот.

Полигоном частот называется ломаная линия, соединяющая точки с абcциcсой (Ох) - варианта и ординатой (Оу) - частота.

Cтроим полигон частот.




Полигоном относительных частот называется ломаная линия, соединяющая точки с абсциссой (Ох) - варианта и ординатой (Оу) - относительная частота.

Строим полигон относительных частот.

Полигон относительных частот




Гистограммой частот называется фигура, состоящая из прямоугольников с равными основаниями (длина интервала) и площадью численно равной частоте.

Для построения гистограммы воспользуемся таблицей:


xii+1

(27; 29]

(29; 31]

(31; 33]

(33; 35]

(35; 37]

ni

4

47

56

22

1

hi = ni

Δx

4/2

47/2

56/2

22/2

½




















Δx=2


hi




































56⁄ 2






















































47⁄ 2


























































































22⁄ 2

















































































4/2


















1/2



















27

29

31

33

35

37











xi


Гистограммой относительных частот называется фигура, состоящая из прямоугольников с равными основаниями (длина интервала) и площадью численно равной относительной частоте.

Для построения гистограммы воспользуемся таблицей:


xii+1

(27; 29]

(29; 31]

(31; 33]

(33; 35]

(35; 37]

Р*i

4/130

47/130

56/130

22/130

1/130

hi = P*i

Δx

4/260

47/260

56/260

22/260

1/260


Δx=2

















































h*i

















































































56∕ 260



























47⁄ 260




































22⁄ 260




































4∕ 260



























1 ∕ 260



























0

27

29

31

33

35

37











xi




















Построение эмпирической функции распределения


Статистическая функция распределения (эмпирическая) - это частота события, состоящего в том, что случайная величина Х в процессе изменения примет значение меньше некоторого фиксированного х


F*(х) = Р* = P* (X<x)


Статистическая функция распределения (эмпирическая) является разрывной функцией, точки разрыва совпадают с наблюдаемыми значениями случайной величины, а скачок в каждой точке разрыва равен частоте появления наблюдаемого значения в данной серии наблюдения. Сумма скачков всегда равна 1.


9

Σ Pi* = 1

i=1

1) ∞ < х ≤ 28

F* (x) =P* (X<28) =0

2) 28

F* (x) =P* (X<29) =P* (X=28) =1/130

3) 29

F* (x) =P* (X=28) + P* (X=29) =1/130+3/130=4/130

4) 30

F* (x) =P* (X<31) = P* (X=28) + P* (X=29) P* (X=30) +1/130+3/130+18/130=22/130

5) 31

F* (x) =P* (X<32) = P* (X=28) + +P* (X=29) +P* (X=30) +P* (X=31) =1/130+3/130+18/130+29/130=51/130

6) 32

F* (x) =P* (X<33) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31)

P* (X=32) =1/130+3/130+18/130+29/130+32/130=83/130

7) 33

F* (x) =P* (X<34) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +

+P* (X=32) +P* (X=33)

=1/130+3/130+18/130+29/130+32/130+24/130=107/130

8) 34

F* (x) =P* (X<35) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +

+P* (X=32) +P* (X=33) P* (X=34) =

=1/130+3/130+18/130+29/130+32/130+24/130+18/130=125/130

9) 35

F* (x) =P* (X<36) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +

+P* (X=32) +P* (X=33) P* (X=34) + P* (X=35)

=1/130+3/130+18/130+29/130+32/130+24/130+18/130+4/130=129/130

10) x>36

F* (x) =1


0, -∞<х≤28

1/130, -∞<х≤29

4/130, 29<х≤30

22/130, 30<х≤31

F*(x) 51/130, 31<х≤32

83/130, 32<х≤33

107/130, 33<х≤34

125/130, 34<х≤35

129/130, 35<х≤36

1, х>36

Статистическая функция распределения является разрывной функцией и её графиком является ступенчатая линия.

Построим систему координат:

на оси Ох=хi

на оси Оу=F* (x)
















F*
























1




































129/130
























125/130




























































107/130




























































83/130




























































51/130




























































22/130
















































4/130
























1/130
























0











xi


28

29

30

31

32

33

34

35

36





Статистические оценки параметров распределения


Одной из задач статистики является оценка параметров распределения случайной величины Х по данным выборки.

Оценка параметра зависит от наблюдаемых значений и от числа наблюдений. Для того чтобы полученную оценку можно было бы использовать на практике она должна удовлетворять следующим условиям:

1) оценка должна быть не смещённой оценкой параметра, т.е. математическое ожидание должно быть равно оцениваемому параметру. Если это условие не выполняется, то оценку называют смещённой оценкой оцениваемого параметра;

2) оценка должна быть состоятельной оценкой оцениваемого параметра;

3) Оценка должна быть эффективной оценкой оцениваемого параметра;

Из всех различных оценок выбираем ту которая имеет наименьшую дисперсию она и называется эффективной если её дисперсия является минимальной из всех получившихся дисперсий.

Таким образом, чтобы полученная опытным путем оценка оцениваемого параметра была пригодной она должна быть несмещённой состоятельной и эффективной.

Пусть изучается дискретная генеральная совокупность объема N количественного признака Х.

_ х1+х2+….+хN

хг= =

N


N

=Σ xi

i=1

N



Генеральной средней совокупностью называют среднее арифметическое наблюдаемых значений.

_ х1×N1+xN2+…...xk×Nk

хг= =

N


k

=Σ xi×Ni

i=1

N



Если же значение признака х1, х2,……. хк имеют соответственно частоты N1,N2……. Nk, то средняя генеральная вычисляется по формуле:



Пусть для изучения генеральной совокупности относительно некоторого количественного признака Х произведена выборка объема n.

х1+х2+….хn

хв= =

n

n

=Σ xi

i=1

n


Выборочной средней называют среднее арифметическое наблюдаемых значений в данной выборке.



_ х1×n1+x2×n2+…+xk×nk

хв=______________________ =

n


k

=Σ xni

i=1

n




Если же значение признака х1, х2,…. хk имеет соответственно частоты n1,n2,…. nk, то выборочная средняя определяется по формуле:

_ _ _

_ (х1-хв)2 + (х2-хв)2 + ….(хn-хв)2

Dв= n =


n _

=Σ (хi-xв )2

i=1

n




xi

28

29

30

32

32

33

34

35

36

ni

1

3

18

29

32

24

18

4

1


28×1+29×3+30×18+31×29+32×32+33×24+34×18+35×4+36×1

хв =

130

= 4158 = 31,98

130


Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений от выборочной средней. Вычисляется выборочная дисперсия по формуле:


_ _ _

_ (х1-хв)2× n1 + (х2-хв)2 ×n2+ ….(хk-хв)2×nk =

Dв= n


k _

=Σ (хi-xв )2× ni

i=1

n



Если же значение признака х1, х2…. x k имеет соответственно частоты n1,n2…. nk, то выборочная дисперсия вычисляется по формуле:



(28-31,98) 2×1+ (29-31,98) 2×3+ (30-31,98) 2×18+ (31-31,98) 2×29+

Dв= + (32-31,98) 2×32+ (33-31,98) 2×24+ (34-31,98) 2×18+ (35-31,98) 2×

×4+ (36-31,98) 2×1 =

130

= 291,972 = 2,24

130


Среднее выборочное квадратичное отклонение - это величина численно равная квадратному корню из выборочной дисперсии.

_ __

σв = Dв

σв = Dв



__

σв = √ 2,24 = 1,5


Нормальный закон распределения случайной величины


Говорят, что случайная величина распределена по нормальному закону если плотность распределения этой случайной величины выражается формулой:


1 -(x-a)2

F(x) = σ √2¶ × e 2





Проверка гипотезы о нормальном распределении изучаемой величины


Гипотезу Н0 выдвигаем в качестве основной - пусть наш исследуемый признак х распределён по нормальному закону. Параллельно гипотезе Н0 выдвигаем альтернативную гипотезу о том, что исследуемый признак распределен не по нормальному закону.

Проверка гипотезы о предполагаемом законе распределения производится с помощью специально подобранной величины называемой критерием согласия.

Для исследования воспользуемся критерием χ2 Пирсона.

Вычисляем χ2 для наблюдаемых значений. Для вычислений составляем таблицу и воспользуемся следующими формулами:


xi-xв

Zi = _

σв

xi+1-xв

Zi+1= _

σв



_

хв =31,98

_

Dв=2,24

_

σв=1,5


Таблица отдельный файл


k (ni-ni*)2

χ2 набл.=Σ

i=1 ni

χ2 набл=13,8725515


Далее находим χ2 с помощью таблицы критических точек распределения по заданному уровню значимости £=0,05 и числу степеней свободы.

К=S-3

5-3=2

χ2крит. =6,0

χ2 набл=13,8725515 > χ2крит=6,0

Гипотеза не принимается.


Вывод


В данной работе был изучен статистический материал по исследованию прочности на разрыв полосок ситца, статистически были обработаны и получены соответствующие результаты.

Цель курсовой работы реализована через решение поставленных задач.

Наглядно представление о поведении случайной величины показано через полигон частот и полигон относительных частот, гистограммы частот и гистограммы относительных частот.

Была составлена и построена эмпирическая функция распределения и построен график этой функции на основе наблюдаемых значений.

0ценили параметры распределения:

выборочную среднюю

выборочную дисперсию

выборочное среднее квадратичное отклонение.

После обработки имеющихся статистических данных было выдвинуто предположение о нормальном распределении случайной величины. При проверке этой гипотезы оказалось, что случайная величина нераспределена по нормальному закону.

Литература


1.Гнеденко Б.В. Курс теории вероятностей: Учебник. - М.: Наука, 1988.

2.Боровков А.А. Теория вероятностей: Учеб. пособие.; М.: Наука, 1986.

3.Бочаров П.П., Печинкин А.В. Теория вероятностей: Учеб. пособие. - М.: Изд-во ун-та Дружбы народов, 1994.

4.Бочаров П.П., Печинкин А.В. Математическая статистика: Учеб. пособие. - М.: Изд-во ун-та Дружбы народов, 1994.

5.Б.М. Рудык, В.И. Ермаков, Р.К. Гринцевевичюс, Г.И. Бобрик, В.И. Матвеев, И.М. Гладких, Р.В. Сигитов, В.Г. Шершнев. Общий курс высшей математики для экономистов: Учебник / Под ред. В.И. Ермакова. - М.: ИНФАРМА-М, 2005. - 656с. - (Высшее образование).


Нравится материал? Поддержи автора!

Ещё документы из категории математика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ