Комплексные числа

Комплексные числа

Реферат по математике ученицы 8г класса Ваулиной Светы

Муниципальное образовательное учреждение-гимназия 47

г.Екатеринбург 2000г.

Введение

Решение многих задач физики и техники приводит к квадратным уравнениям с отрицательным дискриминантом. Эти уравнения не имеют решения в области действительных чисел. Но решение многих таких задач имеет вполне определенный физический смысл. Значение величин, получающихся в результате решения указанных уравнений, назвали комплексными числами. Комплексные числа широко использовал отец русской авиации Н. Е. Жуковский (1847 – 1921) при разработке теории крыла, автором которой он является. Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.

Цель настоящего реферата знакомство с историей появления комплексных чисел, с действиями с комплексными числами, решение уравнений с комплексным переменным.

Понятие о комплексных числах

Для решения алгебраических уравнений недостаточно действительных чисел. Поэтому естественно стремление сделать эти уравнения разрешимыми, что в свою очередь приводит к расширению понятия числа. Например, для того чтобы любое уравнение х+а = в имело корни, положительных чисел недостаточно и поэтому возникает потребность ввести отрицательные числа и нуль.

Древнегреческие математики считали, что а = с и в = а только натуральные числа, но в практических расчетах за два тысячелетия до нашей эры в Древнем Египте и Древнем Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел – это было сделано китайскими математиками за 2 века до нашей эры. Отрицательные числа применял в 3 веке нашей эры древнегреческий математик Диофант, знавший уже правила действий над ними, а в 7 веке нашей эры эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменение величин. Уже в 8 веке нашей эры было установлено, что квадратный корень из положительного числа имеет два значение - положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа х, чтобы х2 = -9. В 16 веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения х3+3х-4=0), а если оно имело 3 действительных корня (например, х3-7х+6=0),то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим 3 корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.

Чтобы объяснить получившийся парадокс, итальянский алгебраист Дж. Кардано в 1545 предложил ввести числа новой природы. Он показал, что система уравнений х+у = 10, ху = 40 не имеющая решений в множестве действительных чисел, имеет решение всегда х = 5 , у = 5 , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что = -а. Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считая их бесполезными и стремился не применять их. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение этой величины. Но уже в 1572 г. вышла книга итальянского алгебраиста Р. Бомбелли, в котором были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название «мнимые числа» ввел в 1637г. французский математик и философ Р. Декарт, а в 1777г. один из крупнейших математиков VIII века Х. Эйлер предложил использовать первую букву французского числа i = (мнимой единицы), этот символ вошел во всеобщее употребление благодаря К. Гауссу (1831г).

В течениe 17 века продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование. Постепенно развивалась техника операций над комплексными числами. На рубеже 17-18 веков была построена общая теория корней n-й степени сначала из отрицательных, а впоследствии и из любых комплексных чисел.

В конце 18 века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянным коэффициентом. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде.

Я. Бернулли применил комплексные числа для вычисления интегралов. Хотя в течении 18 века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведение, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами. В конце 18- начале 19 веков было получено геометрическое истолкование комплексных чисел. Датчанин Г.Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число z=a+bi точкой М(а,b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой М, а вектором ОМ, идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами.

Геометрические истолкования комплексных чисел позволили определить многие понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости, в теоретической электротехнике.

Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые: Р.И. Мусхелишвили занимался ее приложениями к теории упругости, М.В. Келдыш и М.А. Лаврентьев - к аэродинамике и гидродинамике, Н. Н. Боголюбов и В.С. Владимиров - к проблемам квантовой теории поля.

Действия с комплексными числами

Рассмотрим решение квадратного уравнения х2 +1 = 0. Отсюда х2 = -1. Число х, квадрат которого равен –1, называется мнимой единицей и обозначается i. Таким образом , i2 = -1, откуда i =. Решение квадратного уравнения, например, х2 – 8х + 25 = 0, можно записать следующим образом: х = 4 = 4 = 4 = 4 3 = 4 3i.

Числа вида 4+3i и 4-3i называют комплексными числами. В общем виде комплексное число записывается а + bi, где a и b- действительные числа, а i – мнимая единица. Число а называется действительной частью комплексного числа, bi-мнимой частью этого числа, b- коэффициентом мнимой части комплексного числа.

Сложение комплексных чисел. Суммой двух комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = (a+c) + (b+d)i. Числа a + bi и a-bi называются сопряженными. Их сумма равна действительному числу 2а, (а+bi) + (а-bi) = 2а. Числа а+bi и -a-bi называются противоположными. Их сумма равна нулю. Комлексные числа равны, если равны их действительные части и коэффициенты мнимых частей: а+bi = c+di, если a = c, b = d. Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е. z = a + bi = 0, если a = 0,b = 0. Действительные числа являются частным случаем комплексных чисел. Если b = 0, то a + bi = a - действительное число. Если а = 0, b 0, то a + bi = bi – чисто мнимое число. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.

Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a + bi и с + di называется комплексное число х + уi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел получим два уравнения, из которых найдем, что х = а-с, у = b-d. Значит, (а+bi) - (c+di) = (a-c) + (b-d)i.

Произведение комплексных чисел z 1= a + bi и z2 = c + di называется комплексное число z = (ac-bd) + (ad + bc)i, z1z2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i. Легко проверить, что умножение комплексных чиcел можно выполнять как умножение многочленов с заменой i2 на –1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу: (a + bi)(a - bi) = a2 + b2

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем: (a + bi):(c + di) = = = + i.

Степень числа i является периодической функцией показателя

с периодом 4. Действительно, i2 = -1, i3 = -i, i4 = 1, i4n = (i4)n = 1n = 1, i4n+1 = i, i4n+2 = -1, i4n+3 = -i.

Решение уравнений с комплексным переменным

Рассмотрим сначала простейшее квадратное уравнение z2 = a, где а - заданное число, z - неизвестное. На множестве действительных чисел это уравнение:

1) имеет один корень z = 0, если а = 0;

2) имеет два действительных корня z1,2 = , если а>0;

3) не имеет действительных корней, если а<0.

На множестве комплексных чисел это уравнение всегда имеет корень .

Задача 1. Найти комплексные корни уравнения z2 = a, если:

1)а = -1; 2)а = -25; 3)а = -3.

1)z2 = -1. Так как i2 = -1, то это уравнение можно записать в виде z2 = i2, или z2 - i2 = 0. Отсюда, раскладывая левую часть на множители, получаем (z-i)(z+i) = 0, z1 = i, z2 = -i.Ответ. z1,2 = i.

2) z2 = -25. Учитывая, что i2 = -1,преобразуем это уравнение: z2 = (-1)25,

z2 = i2 52, z2 - 52 = 0, (z-5i)(z+5i) = 0, откуда z1 = 5i, z2 = -5i.Ответ.z 1,2 = 5i.

3) z2 = -3, z2 = i2()2, z2 - ()2i2 = 0, (z - i)(z + i) = 0, z1 = i, z 2 = - i. Ответ. z1,2 = i.

Вообще уравнение z2 = a, где а < 0 имеет два комплексных корня: Z1,2= i.

Используя равенство i2 = -1, квадратные корни из отрицательных чисел принято записывать так: = i, = i = 2i, = i. Итак, определен для любого действительного числа а (положительного, отрицательного и нуля). Поэтому любое квадратное уравнение az2 + bz + c = 0, где а,b,с- действительные числа, а 0, имеет корни. Эти корни находятся по известной формуле:

Z1,2 = .

Задача 2. Решить уравнение z2-4z+13=0. По формуле находим: z1,2 = = = = =2 3i.

Заметим, что найденные в этой задаче корни являются сопряженными: z1=2+3i и z2=2-3i. Найдем сумму и произведение этих корней: z1+z2=(2+3i)+(2-3i)=4, z1z2=(2+3i)(2-3i)=13.

Число 4- это 2-й коэффициент уравнения z2-4z+13=0, взятый с противоположным знаком, а число 13- свободный член, то есть в этом случае справедлива теорема Виета. Она справедлива для любого квадратного уравнения: если z1 и z2 - корни уравнения az2+bz+c = 0, z1+z2 = -, z1z2 =.

Задача 3. Составить приведенное квадратное уравнение с действительными коэффициентами, имеющие корень z1=-1-2i.

Второй корень z2 уравнения является числом, сопряженным с данным корнем z1, то есть z2=-1+2i. По теореме Виета находим

P=-(z1+z2)=2, q=z1z2=5. Ответ z2-2z+5=0.

Заключение

В настоящем реферате дано понятие комплексных чисел, история их возникновения. Рассмотрены примеры действий с комплексными числами. Приведены примеры решения уравнений с комплексным переменным, что позволяет решить любые квадратные уравнения, даже с отрицательным дискриминантом.

В реферате также рассмотрена геометрическая интерпретация комплексных чисел в виде векторов.

Список литературы

1. Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров, Н. Е. Федорова, М. И. Шабунин. Учебник для 8 класса по алгебре.- М.: Просвещение, 1994.-С.134-139.

2. И. С. Петраков. Математические кружки в 8-10 классах.- М.: Просвещение, 1987.- С.50-52.

3. А. П. Савин. Энциклопедический словарь юного математика.-М.: Педагогика, 1989.- С. 143-147.

Нравится материал? Поддержи автора!

Ещё документы из категории математика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ