Матричная форма формулы Крамера
С.К. Соболев
Матричный способ решения СЛАУ, формулы Крамера, свойство присоединенной матрицы и основное свойство линейной зависимости.
Рассмотрим систему линейных алгебраических уравнений (СЛАУ), содержащую
т уравнений и п неизвестных:
(1)
Пусть
– матрица коэффициентов при неизвестных, столбец свободных членов (чисел стоящих справа от равенства в системе (1)) и столбец неизвестных соответственно системы (1). Матрица А называется основной матрицей системы (1). Тогда очевидно, что система (1) может быть кратко записана в матричной форме . Форма (1) называется координатной записью системы. Если
, т.е. число уравнений равно числу неизвестных, то СЛАУ называется «квадратной», она принимает вид:
(2)
Если же матрица А к тому же не вырождена, т.е. , то тогда СЛАУ (2) можно решить как матричное уравнение
по формуле
. (3)
Этот метод называется матричным способом решения СЛАУ (2).
Пример. Решить систему матричным способом, если это возможно:
Решение. Запишем эту систему как матричное уравнение , где
,
. Вычисляем:
, следовательно, матричный способ применим. Находим обратную матрицу:
Следовательно,
.
Ответ:
Формулы Крамера для решения СЛАУ
Эти формулы применимы для решения СЛАУ при тех же условиях, что и матричный способ, а именно, когда матрица А коэффициентов при неизвестных этой СЛАУ квадратная и не вырожденная. Для нахождения неизвестных квадратной системы (2) надо вычислить главный определитель , убедиться что
, и затем вычислить п вспомогательных определителей
, где определитель
(
) получается из главного определителя заменой в нем k-го столбца на столбец В свободных членов:
Тогда решением системы (2) будет: .
Вывод формул Крамера. Распишем подробно формулу (3) .
Вспомним, что , где
– алгебраическое дополнение элемента
, равное
, а
– определитель порядка
, полученный из главного определителя вычеркиванием i-й строки и j-го столбца. Получим
.
Итак, матричный способ дает формулу
(4)
Сравним эту формулу с выражением для , полученным по формуле Крамера:
. (5)
Заметим, что у всех элементов k-го столбца этого определителя алгебраические дополнения точно такие же, как и у элементов k-го столбца матрицы А. Поэтому, разложив определитель в (5) по этому столбцу, получим:
. (6)
Полученная формула (6) в точности совпадает с (4). Формулы Крамера доказаны.
Пример. Решить систему методом Крамера, если это возможно:
Решение. Вычислим главный определитель системы: , следовательно, метод Крамера применим. Далее вычислим три вспомогательных определителя:
Следовательно, .
Дополнение 1. При выводе на лекции в ауд. 220 формулы для обратной матрицы через алгебраические дополнения использовалось основное свойство присоединенной матрицы
.
Доказательство этого свойства, в свою очередь, опиралось на два свойства определителя:
Сумма произведений элементов произвольной строки квадратной матрицы на соответствующие алгебраические дополнения этой же строки равна определителю этой матрицы (и аналогично для столбцов):
(разложение по i-й строке),
(разложение по j-му столбцу)
Сумма произведений элементов произвольной строки квадратной матрицы на соответствующие алгебраические дополнения другой строки равна нулю (и аналогично для столбцов):
, (для строк, при
),
(для столбцов, при
)
Свойство (1) нам известно из общих свойств определителя, которые у нас идут без доказательства. Среди этих свойств есть, в частности, такое:
если в определителе две строки или два столбца совпадают, то он равен нулю.
Теперь докажем свойство (2). Заменим в определителе
j- строку на строку с номером i. Понятно что после этого у полученного определителя две одинаковые строки, и потому он равен нулю. Заметим также, что алгебраические дополнения изменённой j-й строки не изменились, т.к. они не зависят от элементов этой строки. Разложим определитель
по j-й строке, получим:
Аналогично доказывается для столбцов.
Дополнение 2. Относительно линейной зависимости векторов теории линейного пространства, просьба не путать:
Общий критерий линейной зависимости векторов произвольного линейного пространства: Совокупность векторов линейно зависима тогда и только тогда, когда один из векторов выражается в виде линейной комбинации остальных.
Основное свойство линейной зависимости: Пусть даны n векторов линейного пространства , и еще какие-то т векторов этого же пространства,
каждый из которых линейно выражается через
, причем,
. Тогда векторы
линейно зависимы.
Доказательство этого свойства есть в лекциях, присланных на вашу Почту.

Нравится материал? Поддержи автора!
Ещё документы из категории математика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ