по теории вероятности2
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ВОРОНЕЖСКИЙ ИНСТИТУТ ВЫСОКИХ ТЕХНОЛОГИЙ
Факультет заочного и послевузовского обучения
КОНТРОЛЬНАЯ РАБОТА №2
По дисциплине: "Теория вероятностей и элементы математической статистики"
Воронеж 2004 г.
Вариант – 9.
Задача № 1
1-20. Найти методом произведений: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты хi, а во второй соответственные частоты ni количественного признака Х).
19.
xi
14,5
24,5
34,4
44,4
54,4
64,4
74,4
ni
5
15
40
25
8
4
3
Решение:
Составим расчетную таблицу 1, для этого:
запишем варианты в первый столбец;
запишем частоты во второй столбец; сумму частот (100) поместим в нижнюю клетку столбца;
в качестве ложного нуля С выберем варианту 34,5, которая имеет наибольшую частоту; в клетке третьего столбца, которая принадлежит строке, содержащей ложный нуль, пишем 0; над нулем последовательно записываем –1, -2, а над нулем 1, 2, 3;
произведения частот ni на условные варианты ui запишем в четвертый столбец; отдельно находим сумму (-25) отрицательных чисел и отдельную сумму (65) положительных чисел; сложив эти числа, их сумму (40) помещаем в нижнюю клетку четвертого столбца;
произведения частот на квадраты условных вариант, т. е.
, запишем в пятый столбец; сумму чисел столбца (176) помещаем в нижнюю клетку пятого столбца;
произведения частот на квадраты условных вариант, увеличенных на единицу, т. е.
запишем в шестой контрольный столбец; сумму чисел столбца (356) помещаем в нижнюю клетку шестого столбца.
В итоге получим расчетную таблицу 1.
Для контроля вычислений пользуются тождеством
.
Контроль: ;
.
Совпадение контрольных сумм свидетельствует о правильности вычислений.
Вычислим условные моменты первого и второго порядков:
;
.
Найдем шаг (разность между любыми двумя соседними вариантами): .
Вычислим искомые выборочные среднюю и дисперсию, учитывая, что ложный нуль (варианта, которая имеет наибольшую частоту) С=34,5:
в) выборочное среднее квадратичное отклонение:
Таблица 1.
1
2
3
4
5
6
xi
ni
ui
niui
14,5
5
-2
-10
20
5
24,5
15
-1
-15
15
-
34,5
40
0
-25
-
40
44,5
25
1
25
25
100
54,5
8
2
16
32
72
64,5
4
3
12
36
64
74,5
3
4
12
48
75
65
п=100
Задача №2
№№ 21-40. Найти доверительные интервалы для оценки математического ожидания нормального распределения с надежностью 0,95, зная выборочную среднюю , объем выборки и среднее квадратическое отклонение .
Решение:
Требуется найти доверительный интервал
(*)
Все величины, кроме t, известны. Найдем t из соотношения . По таблице приложения 2 [1] находим t=1,96. Подставим в неравенство t=1,96,
,
, п=220 в (*).
Окончательно получим искомый доверительный интервал

Нравится материал? Поддержи автора!
Ещё документы из категории математика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ