Понятие функции. Область определения функции. Способы задания функции

11





ИНСТИТУТ БИЗНЕСА, ПРАВА И ИНФОРМАЦИОННЫХ

ТЕХНОЛОГИЙ








КОНТРОЛЬНАЯ РАБОТА


по дисциплине


МАТЕМАТИКА


на тему


Понятие функции. Область определения функции.

Способы задания функции


Выполнил: Мальский Эдуард Александрович,

студент 2 курса

юридического факультета

заочного отделения

группа 25-ЮЗП





Преподаватель:


Оценка:_______________

Подпись преподавателя:_______________








2004 г.

Оглавление

контрольной работы по дисциплине «Математика»

на тему «Понятие функции. Область определения функции.

Способы задания функции»

Введение……………………………………………………...……………………3

1. Функция и её свойства……………………………………………………..4

2. Способы задания функции…………………………………………...........5

3. Виды функций и их свойства……………………………………………...6

Заключение……………………………………………………………………….11

Список использованной литературы…………………………………………...12





















Введение.

Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.

Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5тыс.лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r2. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости.






























Раздел 1. Функция и её свойства.

Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.

Переменная х- независимая переменная или аргумент.

Переменная у- зависимая переменная

Значение функции- значение у, соответствующее заданному значению х.

Область определения функции- все значения, которые принимает независимая переменная.

Область значений функции (множество значений)- все значения, которые принимает функция.

Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)

Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)

Возрастающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f1)<f2)

Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f1)>f2)













Раздел 2. Способы задания функции.

Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x)- с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.

На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.




















Раздел 2. Виды функций и их свойства.

  1. Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат

  2. Прямая пропорциональность- функция, заданная формулой у=kx, где к0. Число k называется коэффициентом пропорциональности.

Cвойства функции y=kx:

  1. Область определения функции- множество всех действительных чисел

  2. y=kx - нечетная функция

  3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

3)Линейная функция- функция, которая задана формулой y=kx+b, где k и b-действительные числа. Если в частности, k=0, то получаем постоянную функцию y=b; если b=0, то получаем прямую пропорциональность y=kx.

Свойства функции y=kx+b:

  1. Область определения- множество всех действительных чисел

  2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.

  3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

Графиком функции является прямая.

4)Обратная пропорциональность- функция, заданная формулой y=k/х, где k0 Число k называют коэффициентом обратной пропорциональности.

Свойства функции y=k/x:

  1. Область определения- множество всех действительных чисел кроме нуля

  2. y=k/x- нечетная функция

  3. Если k>0, то функция убывает на промежутке (0;+) и на промежутке (-;0). Если k<0, то функция возрастает на промежутке (-;0) и на промежутке (0;+).

Графиком функции является гипербола.

5)Функция y=x2

Свойства функции y=x2:

  1. Область определения- вся числовая прямая

  2. y=x2 - четная функция

  3. На промежутке [0;+) функция возрастает

  4. На промежутке (-;0] функция убывает

Графиком функции является парабола.


6)Функция y=x3

Свойства функции y=x3:

  1. Область определения- вся числовая прямая

  2. y=x3 -нечетная функция

  3. Функция возрастает на всей числовой прямой

Графиком функции является кубическая парабола


7)Степенная функция с натуральным показателем- функция, заданная формулой y=xn, где n- натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2; y=x3. Их свойства рассмотрены выше.

Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x2. График функции напоминает параболу y=x2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем “теснее прижимаются” к оси Х, чем больше n.

Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x3. График функции напоминает кубическую параболу.

8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x-n, где n- натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.

Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x-n обладает в основном теми же свойствами, что и функция y=1/х.

Пусть n- четное число, например n=2.

Свойства функции y=x-2:

  1. Функция определена при всех x0

  2. y=x-2 - четная функция

  3. Функция убывает на (0;+) и возрастает на (-;0).

Теми же свойствами обладают любые функции при четном n, большем двух.


9)Функция y=х

Свойства функции y=х:

  1. Область определения - луч [0;+).

  2. Функция y=х - общего вида

  3. Функция возрастает на луче [0;+).


10)Функция y=3х

Свойства функции y=3х:

  1. Область определения- вся числовая прямая

  2. Функция y=3х нечетна.

  3. Функция возрастает на всей числовой прямой.

11)Функция y=nх

При четном n функция обладает теми же свойствами, что и функция y=х. При нечетном n функция y=nх обладает теми же свойствами, что и функция y=3х.




12)Степенная функция с положительным дробным показателем- функция, заданная формулой y=xr, где r- положительная несократимая дробь.

Свойства функции y=xr:

  1. Область определения- луч [0;+).

  2. Функция общего вида

  3. Функция возрастает на [0;+).

На рисунке изображен график функции y=x5/2. Он заключен между графиками функций y=x2 и y=x3, заданных на промежутке [0;+).Подобный вид имеет любой график функции вида y=xr, где r>1.

На рисунке изображен график функции y=x2/3. Подобный вид имеет график любой степенной функции y=xr , где 0<r<1


13)Степенная функция с отрицательным дробным показателем-функция, заданная формулой y=x-r, где r- положительная несократимая дробь.

Свойства функции y=x-r:

  1. Обл. определения -промежуток (0;+)

  2. Функция общего вида

  3. Функция убывает на (0;+)


14)Обратная функция

Если функция y=f(x) такова, что для любого ее значения yo уравнение f(x)=yo имеет относительно х единственный корень, то говорят, что функция f обратима.

Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y.

Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно прямой y=x.

15)Сложная функция- функция, аргументом которой является другая любая функция.

Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2. Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.























Заключение.

Понятие функции является одним из основных понятии математики вообще. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике.

Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин /определения он не дал вообще/ он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет".

Ученик Лейбница Иоганн Бернулли пошел дальше своего учителя. Он дает более общее определение функции, освобождая последнее от геометрических представлений и терминов: "функцией переменной величины называется количество, образованное каким угодно способом из этой величины и постоянных".







03.02.2004 года








Список использованной литературы

в контрольной работе по дисциплине «Математика»

на тему «Понятие функции. Область определения функции. Способы задания функции»

1. Евстафьева В.Ю. Математика. Алгебра. Функции. Анализ данных. Москва: "Дрофа", 2000 года.

2. Ильин В.А., Куркина А.В. Высшая математика. Москва: "Проспект", 2003 года.

3. Колмогоров А. Н. Алгебра и начала анализа. Москва: "Просвещение", 1990 года.

4. Максименко В.Н. Математический анализ в примерах и задачах: Часть. 2. Москва: "НГТУ", 2002 года.

5. Никольский С.Н. Курс математического анализа, учебник. Москва: "Физматлит", 2002 года.









Нравится материал? Поддержи автора!

Ещё документы из категории математика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ