Распределение случайной величины Эмпирические линии регрессии
Контрольная работа № 1
Задача 1
Рабочие обслуживают три станка, на которых обрабатывается однотипные детали. Вероятность изготовления бракованной детали на первом станке равна 0,2, на втором – 0,3, на третьем – 0,4. Обработанные детали складываются в один ящик. Производительность первого станка в три раза больше чем второго, а третьего – в два раза меньше чем второго. Взятая на удачу деталь оказалась бракованной. Найти вероятность того, что она изготовлена на третьем станке.
Решение:
Событие А – взятая деталь оказалась бракованной. Деталь может быть изготовлена на первом, втором или третьем станке, обозначим через В1, В2 и В3. Соответственно Р(В1) = , Р(В2) =
, Р(В3) =
.
Условная вероятность того, что бракованная деталь изготовлена первым станком РВ1(А) = 0,02, аналогично РВ2(А) = 0,03 и РВ3(А) = 0,04.
По формуле полной вероятности
Р(А) =
По формуле Бейеса
Ответ: РА(В3) = 0,1818
Задача 2
Каждая из пяти упаковок тетрадей содержит две тетради в линейку и три в клетку. Из каждой упаковки случайным образом отбираются по две тетради. Найти вероятность того, что не менее чем в трех из отобранных пяти пар тетрадей обе тетради будут в клетку.
Решение:
Вероятность взять 2 тетради в клетку из пачки
Р = .
Не менее трех пар из пяти отобранных должны быть – 3 пары, 4 пары, 5 пар.
Вычислим
Р5(3) + Р5(4) + Р5(5).
Pn(k) = ,
где р = 0,3 и q = 0,7.
Р5(3) = 0,1323
Р5(4) = 0,0284
Р5(5) = 0,0024
Искомая вероятность равна 0,1323 + 0,0284 + 0,0024 = 0,1631
Ответ: 0,1631
Задача 3
Вероятность того, что договор страховой кампании завершится выплатой по страховому случаю, равна 0,1. Страховая кампания заключила 2000 договоров. Найти вероятность того, что страховой случай наступит: а) 210 раз; б) от 190 до 250 раз включительно.
Решение:
а) Используем локальную теорему Лапласа, где k = 210, р = 0,1 и q = 0,9.
Pn(k) = , где
=
Р2000(210) =
б) Используем интегральную теорему Лапласа, где n = 2000, k2 = 250, k1 = 190.
Pn(k1;k2) = (x’’) - (x’),
х’’ = .
х’ = .
(x’’) = (3,73) = 0,4999.
(x’) = (-0,75) = - 0,2764.
P2000(190;250) = 0,4999 + 0,2764 = 0,7763/
Ответ: а) Р2000(210) = 0,0224, б) Р2000(190;250) = 0,7763
Задача 4
Законное распределение независимых случайных величин Х и У имеют вид:
Х:
-
xi
0
1
2
pi
0,3
?
0,2
Y:
-
yi
1
2
pi
0,4
?
Найти вероятность P(X = 1), P(Y = 2).
Составить закон распределения случайной величины
Z = X*Y.
Проверить выполнение свойства математического ожидания:
M(Z) = M(X)*M(Y)
Решение:
Р(Х = 1) = 1 – (0,3 + 0,2) = 0,5
Р(Y = 2) = 1 – 0,4 = 0,6
Составим закон распределения случайной величины Z = X*Y
xj
0
1
2
yi
pj
pi
0,3
0,5
0,2
1
0,4
0
0,12
1
0,2
2
0,08
2
0,6
0
0,18
20,3
4
0,12
zi
0
1
2
4
pi
0,3
0,2
0,38
0,12
pi = 0,3 + 0,2 + 0,38 + 0,12 = 1
M(Z) = 0*0,3 + 1*0,2 + 2*0,38 + 4*0,12 = 1,44
M(X) = 0*0,3 + 1*0,5 + 2*0,2 = 0,9
M(Y) = 1*0,4 + 2*0,6 = 1,6
M(Z) = M(X)*M(Y) = 0,9*1,6 = 1,44.
Ответ:
-
Zi
0
1
2
4
Pi
0,3
0,2
0,38
0,12
Задача 5
Функции распределения непрерывной случайной величины Х имеет вид:
0 при х -1,
F(x) = (х + 1)2 при -1 х 0,
1 при х 0.
Найти математическое ожидание этой случайной величины и вероятность того, что при каждом из трех независимых наблюдений этой случайной величины будет выполнено условие .
Решение:
Найдем плотность распределения
0 при х -1,
f(x) = F’(x) = 2(x + 1) при -1 х 0,
1 при х 0.
М(х) =
- математическое ожидание.
Р(х ) = Р( -1 х <
) = F(
) – F( -1) =
Ответ: М(х) = и Р(х <
) =
Контрольная работа № 4
Задача 1
При выборочном опросе ста телезрителей, пользующихся услугами спутникового телевидения, получены следующие результаты распределения их по возрасту
Возраст (лет)
Менее 20
20 – 30
30 – 40
40 – 50
50 – 60
60 – 70
Более 70
Итого
Количество пользователей (чел.)
8
17
31
40
32
15
7
150
Найти:
а) Вероятность того, что средний возраст телезрителей отличается от среднего возраста, полученного по выборке, не более чем на два года (по абсолютной величине);
б) Границы, в которых с вероятностью 0,97 заключена доля телезрителей, возраст которых составляет от 30 до 50 лет;
в) Объем бесповторной выборки, при котором те же границы для доли можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных сведений о доле нет.
Решение:
Вычислим среднюю арифметическую и дисперсию распределения. Величина интервала k = 10 и с = 45, середина пятого интервала. Вычислим новые варианты в рабочей таблице:
i
[xi;xi+1]
xi
ui
ni
ui;ni
u2i;ni
ui +1
(ui + 1)ni
1
10 – 20
15
-3
8
-24
72
-2
32
2
20 – 30
25
-2
17
-34
68
-1
17
3
30 – 40
35
-1
31
-31
31
0
0
4
40 – 50
45
0
40
0
0
1
40
5
50 – 60
55
1
32
32
32
2
128
6
60 – 70
65
2
15
30
60
3
135
7
70 – 80
75
3
7
21
63
4
112
315
0
150
-6
326
7
464
a) Найдем среднюю квадратическую ошибку бесповторной выборки
Искомая доверительная вероятность
б) Выборочная доля зрителей от 30 до 50 лет
Средняя квадратическая ошибка бесповторной выборки для доли
Из соотношения = Ф(t) = 0,97; t = 2,17
Предельная ошибка выборки для доли = 2,17*0,0376 = 0,08156
Искомый доверительный интервал
0,4733 – 0,08156 р 0,4733 + 0,08156
0,3918 р 0,5549
в) Учитывая = Ф(t) = 0,3876; t = 2,5
человек.
Если о доле p = w ничего не известно, полагаем (pq)max = 0,25
человек.
Ответ: а) ; б) 0,3918 р 0,5549 ; в) 190 человек
Задача 2
По данным задачи 1, используя критерий 2 – Пирсона, при уровне значимости, а = 0,5 проверить гипотезу о том, что случайная величина Х – количество телезрителей – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
Решение:
Выдвигается гипотеза Н0: случайная величина Х – количество телезрителей – распределена нормально. с параметрами а = 44,6 и 2 = 217,17.
Для расчета рi используем функцию Лапласа
Дальнейшие расчеты покажем в таблице
i
[xi;xi+1]
ni
pi
npi
(ni – npi)
1
10 – 20
8
0,0582
8,7225
0,522
0,0598
2
20 – 30
17
0,1183
17,738
0,5439
0,0307
3
30 – 40
31
0,2071
31,065
0,0042
0,0001
4
40 – 50
40
0,2472
37,073
8,5703
0,2312
5
50 – 60
32
0,2034
30,51
2,2201
0,0728
6
60 – 70
15
0,1099
16,478
2,183
0,1325
7
70 – 80
7
0,0517
7,755
0,57
0,0735
150
0,9956
149,34
0,6006
Фактическое значение 2 = 0,6006 Соотносим критическое значение 20,05;4 = 9,49 k = m – r – 1 = 7 – 2 – 1 = 4.
Так как 2 20,05;4, гипотеза Н0 согласуется с опытными данными. Выполним построение:
Ответ: Гипотеза о выбранном теоретическом нормальном законе N (44,6; 217,17) согласуется с опытными данными.
Задача 3
Распределение 50 однотипных малых предприятий по основным фондам Х (млн., руб.) и себестоимости выпуска единицы продукции. У (тыс., руб.) представлено в таблице:
у
х
1,25
1,5
1,75
2,0
2,25
Итого
80 – 130
1
2
3
6
130 – 180
1
4
3
8
180 – 230
4
8
3
1
16
230 – 280
2
5
4
11
280 – 330
3
4
2
9
Итого:
5
3
16
9
7
50
Необходимо:
1. Вычислить групповые средние xj и yi и построить эмпирические линии регрессии.
2. Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость:
а) найти уравнение прямых регрессий и построить их графики на одном чертеже с эмпирическими линиями регрессии;
б) вычислить коэффициент корреляции на уровне значимости, а=0,05, оценить его значимость и сделать вывод о тесноте и направлении связи между переменными Х и Y;
в) используя соответствующие уравнения регрессии, определить количество выпускаемой продукции при стоимости одной единицы продукции, равной 2,5 тыс., руб.
Решение:
1) Составим корреляционную таблицу
-
х
у
xi
1,25
1,5
1,75
2
2,25
ni
уi
80 – 130
105
1
2
3
6
2,0833
130 – 180
155
1
4
3
8
2,0625
180 – 230
205
4
8
3
1
16
1,7656
230 – 280
255
2
5
4
11
1,5456
280 – 330
305
3
4
2
9
1,4722
nj
5
13
16
9
7
50
xj
285
255
220,63
160,56
140,71
Построим эмпирические линии регрессии
2) Предположим, что между переменными Х и Y существует линейная корреляционная зависимость;
а) Вычислим среднее значение
Найдем уравнение
ух = byx(x – x) + y,
где byx =
ух = - 0,0036(х – 214) + 1,75
ух = - 0,0036х + 2,5105
ху - х = byx(у – у),
где bху =
ху = - 157,14(х – 1,75) + 214
ху = - 157,14х + 489
б) Коэффициент корреляции
связь обратная и тесная;
Статистика критерия
При а = 0,05 и k = 48; t0,05;48 = 2,01, так как t t0,05;48 коэффициент значительно отличается от 0.
в) Используя ху = - 157,14у + 489
х = - 157,14*2,5 + 489 = 96,14
Ответ: а) ух = - 0,0036х + 2,5105; ху = - 157,14х + 489.
б) k = - 0,7473.
в) х = 96,14 при у = 2,5

Нравится материал? Поддержи автора!
Ещё документы из категории математика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ