Решение уравнений в конечных разностях
Міністерство освіти і науки України
Національний технічний університет
“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"
Кафедра “Обчислювальної техніки та програмування"
Реферат з курсу “Численные методы"
Тема: “Решение уравнений в конечных разностях”
Виконав:
студент групи
Перевірив:
Харків
Содержание
1. Разностная аппроксимация дифференциальных уравнений
Используя описанные выше соотношения между операторами дифференцирования и операторами конечных разностей несложно в заданном интервале изменения независимой переменной получить конечно-разностную аппроксимации дифференциальных уравнений системой алгебраических рекуррентных формул или уравнений. Основная идея аппроксимации схематически представляется так: В заданном в общем виде дифференциальном уравнении или системе

производится замена независимой переменной t ее представлением в заданном интервале
путем преобразования
, а искомая функция и ее производные выражаются посредством конечно-разностных соотношений через некоторое число равномерно расположенных с шагом
ординат
, начиная с
:
,
,
,...,
:
.
Разрешив неявную форму разностного выражения относительно старшей ординаты
, получим рекуррентную формулу, из которой по известным k начальным ординатам можно последовательно найти ординаты всего искомого процесса. Вопрос лишь в том, где взять нужное количество начальных ординат. Благополучно разрешима задача лишь в случае, когда производная аппроксимируется разностью первого порядка:
.
После приведения исходной системы к системе уравнений первого порядка каждая искомая переменная получает значение при
, равное своему начальному условию. В результате рекуррентный вычислительный процесс оказывается определенным и позволяет вычислить на очередном шаге
значения всех переменных:

или

где
- вектор переменных,
- вектор производных.
Такой вычислительный процесс в литературе получил название численного интегрирования систем дифференциальных уравнений по явному методу Эйлера. Основная трудность здесь заключается в выборе шага интегрирования для нецелочисленной независимой переменной t.
2. Решение линейных разностных уравнений
Система линейных разностных уравнений может быть в ряде случаев решена и аналитически. Решение представляется в виде алгебраического выражения от целочисленной переменной. Методика решения аналогична той, что применяется и при решении линейных дифференциальных уравнений.
Используется тот факт, что общее решение неоднородного линейного уравнения представляется взвешенной суммой системы фундаментальных решений однородного уравнения и одного частного решения уравнения неоднородного. Воздействие неоднородности на характер общего решения не связано с конкретными значениями начальных условий. Именно это позволяет находить лишь одно частное решение уравнения с правой частью. Число фундаментальных решений однородного уравнения определяется порядком последнего.
В качестве частных решений для линейных уравнений обычно используют функции, инвариантные по отношению к операции сдвига, т.е. функции, не изменяющие своей структуры при переносе начала координат. В конечно-разностных уравнениях это показательные функции:

Где p - некоторый параметр-константа. Количество частных решений определится числом параметров
, для которых
будет обращать разностное уравнение в тождество. Общее решение составляется в виде суммы частных решений, умноженных на коэффициенты, определяемые конкретными начальными условиями. Рассмотрим пример решения линейного неоднородного уравнения третьего порядка.
Пусть требуется заменить рекуррентный вычислительный процесс с псевдокодом следующего вида:

на формульное выражение для
, как функции от n, позволяющее выборочно вычислять значение любого члена последовательности. Для этого в рекуррентном операторе цикла заменим оператор ': =' на символ равенства '=' и запишем полученное уравнение в форме неоднородного разностного уравнения относительно
:
.
В качестве фундаментальной системы функций возьмем
тогда характеристическое уравнение примет следующий вид:
.
Решив уравнение, найдем корни:
, следовательно, частными решениями однородного уравнения будут:

Частное решение неоднородного уравнения (с правой частью) попробуем найти в виде функции, которая будет пропорциональна квадратуре от правой части с неизвестными коэффициентами:

Для нахождения коэффициентов a и b подставим в уравнение
и приравняем коэффициенты при одинаковых степенях n в левой и правой частях полученного равенства. Последовательно выполняя сказанное, имеем:

Раскрыв скобки и сгруппировав слагаемые при различных степенях n, получим

откуда
и частное решение примет вид
.
Общее решение для конкретных начальных условий ищем в виде суммы частных решений:
.
Константы
находим из уравнений, получаемых после подстановки в общее решение значений для
при
:


В результате, общее решение неоднородного уравнения будет:

Для примера выпишем несколько первых членов ряда, полученных вычислением этого выражения: [0, - 1, 1, 2, 2, 5, 11, 16, 20, 27, 37, 46, 54, 65, 79, 92, 104, 119, 137, 154, 170,...]
3. Рекуррентные формулы для решения разностных уравнений
Интегрирование системы нелинейных разностных уравнений первого порядка по Эйлеру аналитически выполнить, как правило, не удается. Поэтому решение задачи получают в численном виде путем вычисления очередных значений процессов по рекуррентным формулам, начиная с известных начальных условий:
,
Где
- очередное значение вектора решений,
- вектор начальных значений.
Основной проблемой процесса численного интегрирования является выбор величины шага h. Формула Эйлера вносит в процесс численного решения погрешность, пропорциональную h. Это несложно увидеть, если сравнить вычисляемое при интегрировании уравнения выражение с первыми слагаемыми ряда Тейлора для точки
:
.
По Эйлеру
,
или иначе:
,
а по Тейлору:
,
или иначе:
.
Отбрасываемые члены разложения
характеризуют погрешность формулы Эйлера, в которую входят слагаемые с h в первой степени и выше.
Результат интегрирования можно улучшить, если по найденному значению
,
вычислить значение производной, т.е.
, и в формулу Эйлера ввести среднее арифметическое двух производных: для начала и для конца интервала
. Модифицированная формула примет следующий вид:

Такого рода уточнения (итерации) можно повторять, пока в выражении
модуль разности станет
.
Погрешность модифицированной формулы будет пропорциональна
. Это показывается аналогично предыдущему сопоставлению.
Продифференцируем исходное уравнение

и подставим выражение производной в ряд Тейлора. В результате получим:

Аналогичное выражение для первых двух слагаемых и остаточного ряда второй степени от h получается и для модифицированной формулы Эйлера, если в последней осуществить разложение
в ряд Тейлора по степеням h:

Усреднение производных с итерационным уточнением их для нескольких точек интервала особенно наглядно представлено в формулах Рунге-Кутта четвертого порядка
:

где

Здесь производная вычисляется в трех точках интервала h (на концевых точках и дважды в средней точке интервала для итерационного уточнения), после чего окончательное приращение находится как взвешенное среднее.
4. Интерполяционные рекуррентные формулы
Достоинством методов Эйлера и Рунге-Кутта является их самоначинаемость независимо от порядка формулы, а основной недостаток в том, что число вычислений правой части неоднородной системы дифференциальных уравнений равно порядку формулы.
В этом плане выгодно отличаются формулы интегрирования, построенные на основе интерполяционных многочленов, опорными точками которого являются предыдущие, уже вычисленные значения переходного процесса. Широко используемым методом интегрирования с таким подходом могут служить формулы интегрирования Адамса.
4.1 Интерполяция конечными разностями “назад”
Возьмем в качестве примера интерполяционный многочлен Ньютона для интерполирования функции “назад”, т.е. в сторону меньших значений независимой переменной по отношению к текущему ее значению:

Построение такого интерполяционного многочлена удобно осуществлять с применением повторных конечных разностей “назад”:
.
Взаимосвязь оператора
и рассмотренных выше операторов
и
характеризуется следующими соотношениями:

Выразим ординату функции, отстоящую от текущей на k шагов назад, через ординату функции
в текущей точке и выполним ряд эквивалентных преобразований с названными линейными операторами:


Если положить
, то


Таким образом, интерполяционный многочлен Ньютона для интерполирования “назад” принимает вид:
,
где
принимает целые значения для
,
- i-тая повторная конечная разность “вперед", вычисляемая по значениям функции в соответствии с таблицей:







-4






-3





-
-2




-
-
-1



-
-
-
0



-
-
-
1



-
-
-
В таблице жирным шрифтом выделены конечные разности от нулевого порядка и выше, которые входят в интерполяционную формулу Ньютона.
4.2 Рекуррентные формулы Адамса
Пусть теперь требуется найти решение уравнения
.
для которого уже каким-либо способом найдены k+1 значений решения
, что, естественно, определяет и соответству-ющие значения
. На основе
построим интерполя-ционный многочлен k-той степени:

Приращение решения на внешнем интервале
можно получить, проинтегрировав интерполяционный многочлен в интервале
по переменной q, предварительно сделав замену переменных:
.
Интегралы в каждом слагаемом зависят только от i и определяют коэффициенты, с которыми повторные разности входят в выражение для приращения. Таким образом, экстраполяционная формула Адамса имеет вид:
,
где первые пять коэффициентов приведены в таблице
i
0
1
2
3
4






Появление нового значения
требует для очередного шага вычислить новые значения повторных разностей. Для этого в таблице разностей заполняется по одной дополнительной клеточки в каждом столбце после одного-единственного вычисления правой части. В этом и состоит основное достоинство экстраполяционных формул.
В формулу Адамса вместо повторных разностей можно подставить их выражения через ординаты
. Например, ограничившись
, получим

Модификаций у формул Адамса много. Можно менять не только интерполяционные многочлены, но и вычислять приращения в пределах нескольких шагов. Наиболее простой получается формула для k=4, в которой приращение вычисляется на интервале в два шага
:



Если построить интерполяционный многочлен Ньютона не от точки
, а от точки
и опять вычислить для k=4 приращение в интервале
, то последнее может служить контролем за точностью вычислений:


Литература
1.Беллман Р., Кук К. Дифференциально-разностные уравнения. М.: Мир, 1967. - 548с.
2.Волков Е.А. Численные методы. СПб.: Лань, 2004. - 248с.
3.Гельфонд А.О. Исчисление конечных разностей. М.: Наука, 1967. - 375с.
4.Калашников В.И. Аналоговые и гибридные вычислительные устройства: Учеб. пособие. - Харьков: НТУ “ХПИ", 2002. - 196с.
5.Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. Новосибирск: Изд-во иностр. лит., 1958. - 474с.
6.Скалкина М.А., “О колебаниях решений уравнений в конечных разностях", Изв. вузов. Матем., 1959, № 6, 138-144
Нравится материал? Поддержи автора!
Ещё документы из категории математика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ