Ряд распределения функция распределения

Задача 1 (5)

Производится контроль партии из 4 изделий. Вероятность изделия быть неисправным равна 0,1. Контроль прекращается при обнаружении первого неисправного изделия. Х – число обследованных приборов. Найти:а) ряд распределения Х б)функцию распределения F(X), в ответ ввести F(3.5). в) m(x) г) d(x) д) p(1.5<X<3.5).


Решение

Пусть событие А – состоит в том, что изделие исправно, и соответственно - неисправно. По условию, вероятность , значит p(A)=1-. Случайная величина Х – число обследованных приборов – может принимать значения 0(если первый же прибор неисправен),1,2,3,4.

Найдем соответствующие вероятности:

Составим ряд распределения Х:

Х

0

1

2

3

4

р

0,1

0,09

0,081

0,0729

0,6561


Х – дискретная случайная величина. Найдем функцию распределения F(x)=P(X


Значение F(3.5)=0.34391


Математическое ожидание дискретной случайной величины


Дисперсия


Вероятность


Задача 2(2). События А и В независимы. Вероятность наступления хотя бы одного из них равна 0,94. Найти Р(А), если Р(В)=0,7. Ответ записать в виде десятичной дроби.


Решение.

Вероятность наступления суммы событий Р(А+В)=Р(А)+Р(В)-Р(АВ). Но так как события А и В независимы, то Р(АВ)=Р(А)Р(В).

Имеем Р(А+В)=0,94 (наступает событие А или событие В или оба); Р(В)=0,7

0,94=Р(А)+0,7- Р(А)


0,3Р(А)=0,94-0,7=0,24


Р(А)= - вероятность наступления А.


Задача 3(6). Дана плотность распределения случайной величины Х:

Найти а)константу А б)функцию распределения F(x), в ответ ввести F(0); F(0.5) в) m(x) г)d(x)

д) P(0<X<0.5).


Решение.

Константу А найдем из условия для р(х) :

Имеем

Отсюда .

Функция распределения непрерывной случайной величины

Для p(x)=0, F(x)=0

Для -

Для

Математическое ожидание непрерывной случайной величины

Имеем

Дисперсия непрерывной случайной величины

Имеем

Вероятность


Задача 4(2). Дана плотность распределения вероятностей системы (X,Y).

Найти а)константу С;б)р1(х),р2(у); в) mx; г)my ;д)Dx; е)Dy; ж)cov(X,Y); з)rxy; и)F(-1,5); к) M(X|Y=1)


Решение. Плотность системы случайных величин должна удовлетворять условию:

В нашем случае ; ; ;


Y

B 4






-3 A 0 X




б) Плотности р1(х),р2(у):

в) Математические ожидания:

г) Дисперсии:

ж) Ковариация

з) Коэффициент корреляции

и) Значение F(-1,5)

Функция распределения системы случайных величин

. (1)

(-1,5) Y

5

B

D4 4


D1 D0

A X

-3 -1 O

D2 D3



В областях D1,D2,D3,D4 которые не пересекаются с треугольником АВО значениеP(x,y)=0

Вычисляя F(-1,5) представим двойной интеграл в виде суммы интегралов:





к) Математическое ожидание M(x|y=1)

Нравится материал? Поддержи автора!

Ещё документы из категории математика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ