Вычисление пределов
Санкт-Петербургское государственное образовательное учреждение среднего профессионального образования
Согласовано:
Предметной (цикловой) комиссией Председатель
____________/_____________
(Подпись) (ФИО)
«_____» __________200__г.
Утверждено:
Заместителем директора по УР
__________/______________/
(Подпись) (ФИО)
«____»________200___г.
Указания по проведению
практической работы № ___1____
Задачи на вычисление пределов
(Название работы)
По дисциплине «Математика»
Специальность __080110, 080112, 080501__
Разработал преподаватель
_____________(___................. __)
(Подпись) (ФИО)
«_______» _________________200___г.
Цель работы:
1. Формировать умения и навыки вычисления пределов
Формировать умения и навыки самостоятельного умственного труда
Прививать умения и навыки работы со справочным материалом
4. Определить уровень остаточных знаний студентов по данной теме
Перечень справочной литературы :
Богомолов Н.В. «Практические занятия по математике», М: Высшая школа, 2004
Письменный Д. «Конспект лекций по высшей математике», ч.1., Москва, Айрис-Пресс, 2004
Шипачев В.С. «Задачник по высшей математике», М: Высшая школа, 2003
Выгодский М.Я. «Справочник по высшей математике», Росткнига, 2001
Краткие теоретические сведения:
Предел последовательности
Определение. Число называется пределом последовательности , если для любого положительно
го числа найдется такое натуральное число
, что при всех
>
выполняется неравенство
Пишут:
Графически это выглядит так:
n -
Т.е. элемент находится в
- окрестности точки а. При этом последовательности называется сходящейся, в противном случае – расходящейся.
Основные свойства сходящихся последовательностей
1)Сходящаяся последовательность ограничена.
2)Пусть ,
, тогда а)
б)
в)
3)Если и для всех
выполняется неравенства
, то
.
4) Если и последовательность {уn} - ограниченная, то
№1. Найти пределы:
Бесконечно большие и бесконечно малые функции
Определение. Функция называется бесконечно малой при
, если
Например: 1) при
б. м. ф. т.к.
2)
при
б. м. ф. т. к
Определение. Функция называется бесконечно большой при
, если
,
или
Например, есть б. б. Ф при
;
если б. б. ф. при
действительно
и
Теорема (о связи между функций, ее приделом и бесконечно малой функцией). Если функция имеет придел, равный
, то ее можно представить как сумму числа
и бесконечно малой функции
, т.е. если
Теорема (обратная). Если функцию можно представить в виде суммы числа А и б.м.ф.
(x), то число А является пределом функции
, т.е если
, то
Например, требуется вычислить . Представим числитель и знаменатель в виде суммы числа и б.м.ф.
Функции при
есть б.м.ф. таким образом
Основные теоремы о пределах
Теорема 1. Предел суммы (разности) двух функций равен сумме (разности) их пределов:
Теорема справедлива для алгебраической суммы любого конечного числа функций.
Теорема 2. Функция может иметь только один предел при .
Теорема 3. Предел произведения двух функций равен произведению их пределов:
.
Следствие 1. Постоянный множитель можно выносить за знак предела:
Следствие 2. Предел степени с натуральным показателем равен той же степени предела: .
Теорема 4. Предел дроби равен пределу числителя, деленному на предел знаменателя, если предел знаменателя не равен нулю.
Примеры:
1)=
=
=
=
==
=
2) =
=
3)
Первый замечательный предел
Второй замечательный предел
или
Примеры:
Вычислить:
1) .
2) .
3)
4) =
=
=
№2. Найти пределы:
№3. Найти пределы:
Порядок проведения работы:
Используя теоретические сведения выполнить предложенное преподавателем задание
Соответствующим образом оформить работу
Лист 1.
Практическая работа по теме
«Вычисление пределов»
Выполнил:__________
(ФИО)
группа:_____________
Проверил:__________
Оценка:____________
Лист 2.
№ примера
Решение:
Ответ:
Оформление работы:
![](/assets/6990c512/images/basic.png)
Нравится материал? Поддержи автора!
Ещё документы из категории математика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ