Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку

Реферат на тему:

Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку.


1. Властивості лінійного диференціального оператору.

Лінійним диференціальним рівнянням називається рівняння вигляду

(5.1)

де Pi(x), i =1,2,…, n , f(x) – задані функції, неперервні на (a,b).

При цих умовах диференціальне рівняння (5.1) має єдиний розв’язок

y=y(x), який задовільняє початковим умовам .

Цей розвязок визначений і n раз неперервно диференційований на (a,b).

Особливих розвязків диференціальне рівняння (5.1) не має. Будь-який розвязок являється частинним. Якщо при стоїть , то точки, в яких =0, називаються особливими.

Якщо f(x)=0, то диференціальне рівняння (5.1) називають однорідним

(5.2)

Для скорочення запису введемо лінійний диференціальний оператор

(5.3)

Властивості оператора L :

  1. L (xy)=k *L (y), k = const;

  2. L ()=L () + L ();

  3. L .

Використовуючи оператор L диференціального рівняння (5.1) і (5.2) перепишемо у вигляді L (y) = f (x) , L (y) = 0 .

Означення 5.1. Функція y = y (x) називається розв’язком диференціального рівняння (5.1), якщо L (y) f (x) (для диференціального рівняння (5.2)

L (y(x)) 0).

Лінійне диференціальне рівняння (5.1) залишається бути лінійним при будь-якій заміні незалежної змінної .

Лінійне диференціальне рівняння (5.1) залишається бути лінійним при будь-якій лінійній заміні шуканої функції . (5.4)


2. Властивості розвязків лінійного однорідного диференціального рівняння n–го порядку.

Наша задача полягає в тому, щоб знайти всі дійсні розвязки диференціального рівняння (5.5)

Для розвязування такої задачі доцільно знайти деякі комплексні розвязки.

Означення 5.2 Функцію z(x) = w(x) + iv(x), де w(x),v(x) дійсні функції, будемо називати комплексною функцією від дійсної змінної х (w(x) – дійсна частина, v(x) – уявна частина).

Приклад 5.1. Показати справедливість формул , . (5.6)

Формули (5.6) доводяться виходячи з розкладу відповідних множників b раз.

Похідна n-го порядку від z (x) дорівнює . (5.7)

Приведемо формули для обчислення похідної :

а) ; (5.8)

Дійсно

б) Для дійсного к і будь-якого справедлива формула

; (5.9)

в) Використовуючи (5.9) можна показати , (5.10)

де - поліноми степеня n ;

г) При будь-якому (дійсному або комплексному) справедлива формула

. (5.11)

Формула (5.11) доводиться шляхом представлення і використання формули (5.8).

Означення 5.3. Комплексна функція y (x) = (x) + i(x) (5.12) називається розв’язком однорідного диференціального рівняння (5.5); якщо

L (y(x)) 0, a < x < b .

Комплексний розвязок (5.12) утворює два дійсних розвязки (x), (x).

Дійсно L (y(x)) = L ((x) + i(x)) = L((x)) + iL((x)) = 0 .

Звідки L((x)) = 0, L((x)) = 0.


Властивості розвязків лінійного однорідного диференціального рівняння (5.5).

а) Якщо (x) – розвязок , тобто L() 0, то y=c(x), де с – довільна константа , теж розвязок диференціального рівняння (5.5)

L) = сL() = 0.


б) Якщо (x), (x) - розвязки диференціального рівняння (5.5) , то

у= (x)+(x) теж розвязок . Дійсно L (+) = L ()+L () = 0.


в) Якщо (x), (x), ... , ) - розв’язки диференціального рівняння (5.5), то їх лінійна комбінація також являється розв’язком

L = 0.

Приклад 5.2. Записати двохпараметричне сімейство розвязків.

, =cos(x), =sin(x) - розв’язки, тоді y = ccos(x)+csin(x) - розв’язок .


3. Необхідні і достатні умови лінійної незалежності n-розвязків лінійного однорідного диференціального рівняння n – го порядку.

Означення 5.4. Функції (x), (x), ... , називаються лінійно незалежними на (a,b) , якщо між не існує співвідношення виду

(x) + (x) + ... + 0 , a < x < b , (5.13)

де , ... , - постійні числа не рівні нулю одночасно . В противному випадку функції (x), (x), ... , називають лінійно залежними на (a,b).

Для двох функцій поняття лінійної незалежності на (a,b) зводиться до того, щоб відношення функцій , не було постійним на (a,b).

Зауваження 5.1. Якщо одна із функцій на (a,b) тотожньо дорівнює нулю, то ці функції лінійно залежні.

Приклад 5.3. Функції =1, =x, ... , - лінійно незалежні на будь-якому інтервалі (a,b) . Дійсно співвідношення

+x + ... + x=0 , в якому не всі дорівнюють нулю, не може виконуватися для будь-яких x , так як рівняння (n-1) – го степеня має не більше (n-1) – го коренів.

Приклад 5.4. Функції , - лінійно незалежні, так як співвідношення , де не рівні одночасно нулю, виконуються не більше ніж в одній точці. Це випливає з =.

Приклад 5.5. Функції =sinx , =cosx , =1 – лінійно залежні на , так як для будь-якого х справджується співвідношення

sinx + cosx – 1 = 0 .

Розглянемо необхідні умови лінійної залежності n - функцій .


Теорема 5.1. Якщо функції (x), (x), ... , - лінійно залежні на (a,b) , то їх вронскіан W (x) тотожньо дорівнює нулю на (a,b) . Тут

W (x) = (5.14)

Доведення. Згідно умови теореми

(x) + (x) + ... + 0 , a < x < b , де не всі одночасно рівні нулю . Нехай , тоді

(5.15)

Диференціюємо (5.15) (n-1)-раз і підставляємо в (5.14)

W (x) = (5.16)

Розкладаючи визначник (5.16) на суму визначників, будемо мати в кожному з них два однакові стовпці, тому всі визначники будуть рівні нулю і отже

W (x) 0 , a < x < b. Теорема доведена.


Нехай кожна з функцій (x), (x), ... , - розвязок диференціального рівняння (5.5) . Тоді необхідні і достатні умови лінійної незалежності цих

розвязків даються теоремою 5.1. і слідуючою теоремою .

Теорема 5.2. Якщо функції (x), (x), ... , - суть лінійно незалежні розв’язки диференціального рівняння (5.5), всі коефіцієнти якого неперервні на (a,b) , то вронскіан цих розв’язків W не дорівнює нулю в жодній точці інтервалу (a,b) .

Доведення. Припустимо протилежне , що в точці (a,b) . Складемо систему рівнянь

(5.17)

Так як визначник системи (5.17) , то вона має ненульовий розв’язок

. Розглянемо функцію y = , (5.18)

яка являється розв’язком диференціального рівняння (5.5).

Система (5.17) показує , що в точці розвязок (5.18) перетворюється в нуль разом із своїми похідними до (n-1) –го порядку . В силу теореми існування і єдиності це значить , що має місце тотожність y (x) = , a < x < b, де не всі дорівнюють нулю . Останнє означає , що розвязки (x), (x), ... , - лінійно залежні на (a,b). Це протиріччя і доводить теорему.

З теорем 5.1. і 5.2. випливає : для того , щоб n розв’язків диференціального рівняння (5.5) були лінійно незалежними на (a,b) необхідно і достатньо , щоб їх вронскіан не дорівнював нулю в жодній точці цього інтервалу.

Виявляється , для вияснення лінійної незалежності n розв’язків диференціального рівняння (5.5) достатньо переконатися , що W (x) не дорівнює нулю хоча б в одній точці інтервалу (a,b) . Це випливає з наступних властивостей вронскіана від n розвязків диференціального рівняння (5.5):

а) Якщо вронскіан дорівнює нулю в одній точці (a,b) і всі коєфіцієнти диференціального рівняння (5.5) являються неперервними , то на (a,b).

Дійсно, якщо , то по теоремі 5.2. функції (x), (x), ... , - лінійно залежні на (a,b). Тоді , по теоремі 5.1. на (a,b);

б) якщо вронскіан n розв’язків диференціального рівняння (5.5) відмінний від нуля в одній точці (a,b) , то на (a,b) .

Дійсно , якби W (x) дорівнював в одній точці з (a,b) нулю , то згідно а) на (a,b) , в тому числі і в точці (a,b) , що протирічить умові.

Звідси випливає , якщо n розв’язків диференціального рівняння (5.5) лінійно незалежні на (a,b) , то вони будуть лінійно незалежні на будь-якому (a,b) .


4. Формула Остроградського – Ліувілля.

Ця формула має вигляд (5.19)


Доведення . Розглянемо вронскіан W (x) = і обчислимо його похідну

+ + .

Перших (n-1)-визначників рівні нулю , так як всі вони мають по дві однакових стрічки . Далі домножимо (n-1) стрічки останнього визначника відповідно на і складемо всі n стрічок . В силу диференціального рівняння (5.5) маємо = ,

Звідки маємо формулу (5.19) .


5. Фундаментальна система розвязків та ії існування.

Означення 5.5. Сукупність n розв’язків диференціального рівняння (5.5) визначених і лінійно незалежних на (a,b) називається фундаментальною системою розв’язків .

З попереднього випливає , для того , щоб система n розв’язків диференціального рівняння (5.5) була фундаментальною системою розв’язків необхідно і достатньо , щоб вронскіан цих розв’язків був відмінний від нуля хоч в одній точці інтервалу неперервності коефіцієнтів диференціального рівняння (5.5) . Всі ці розвязки повинні бути бути ненульовими .

Теорема 5.3. (про існування ФСР) Якщо коефіцієнти диференціального рівняння (5.5) являються неперервними на (a,b) , то існує фундаментальна система розв’язків на цьому інтервалі.

Доведення . Візьмемо точку (a,b) і побудуємо, використовуючи метод Пікара , розвязки :

з початковими умовами ;

------------- // --------------- ;

... ------------- // --------------- ... ... ... ....

------------- // --------------- .

Очевидно , що , отже побудовані розвязки лінійно незалежні .

Теорема доведена .

З методу побудови лінійно незалежних функцій випливає, що таких функцій можна побудувати безліч.

Побудована система розвязків називається нормованою в точці .

Для будь-якого диференціального рівняння (5.5) існує тільки одна фундаментальна система розв’язків , нормована по моменту .


6. Загальний розвязок. Число лінійно незалежних розвязків.

Теорема 5.4. Якщо (x), (x), ... , - фундаментальна система розв’язків диференціального рівняння (5.5) , то формула

y = , (5.20) де , , ... , - довільні константи, дає загальний розв’язок диференціального рівняння (5.5) в області a < x < b,

, , ... , (5.21) , тобто в області визначення

диференціального рівняння (5.5).

Доведення. Якщо (x), (x), ... , - розв’язки диференціального рівняння (5.5) , то лінійна комбінація (5.20) теж розв’язок .

Систему (5.22) можна розвязати відносно , , ... ,

в області (5.21) , так як . Згідно визначення (5.20) – загальний розвязок і він містить в собі всі розвязки диференціального рівняння (5.5) .

Теорема доведена .


Для знаходження частинного розвязку такого , що (5.23)

необхідно все підставити в (5.22) і визначити , i=1,2,…,n .

Тоді - частинний розвязок , якщо фундаментальна система розв’язків – нормована в точці , то , тобто

(5.24) загальний розвязок в формі Коші .

Зауважимо , що загальний розв’язок диференціального рівняння (5.5) є однорідна лінійна функція від довільних констант .

Твердження 5.1. Диференціальне рівняння (5.5) не може мати більше ніж n лінійно незалежних частинних розвязків.

Дійсно , нехай ми маємо (n+1) частинний розвязок . Розглянемо n перших . Якщо вони лінійно залежні , то і всі будуть лінійно залежні , так як

, a < x < b, де всі не дорівнють нулю . Якщо ж вони лінійно залежні, то по теоремі 5.4. будь-який розвязок , в тому числі і виражається через , , ... , , тобто =. Так , що (n+1)-ий розвязок знову виявився лінійно залежним .

Для побудови диференціального рівняння типу (5.5) по системі лінійно незалежних функцій (x), (x), ... , , які n раз неперервно диференційовані на (a,b) , вронскіан яких , (a,b) необхідно розглянути вронскіан порядку (n+1)

= 0

і розкрити цей визначник по останньому стовпцю .

Якщо відомо один частинний ненульовий розвязок диференціального рівняння (5.5) , то можна понизати порядок його на одиницю заміною

, або (5.25)

Тоді

і диференціального рівняння (5.5) запишемо у вигляді

Ми отримали диференціальне рівняння порядку (n-1) .

Якщо маємо к лінійно незалежнихчастинних розвязків , то диференціальне рівняння (5.5) можна понизити на к одиниць .




Нравится материал? Поддержи автора!

Ещё документы из категории математика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ