Знаходження похідної функції









ТЕМА УРОКУ: Похідні елементарних функцій
МЕТА УРОКУ: формування знань учнів про похідну сталої функції, степеневої функції з цілим показником, тригонометричних функцій.
І Перевірка домашнього завдання
1. Три учні відтворюють розв’язування вправ № 1 (1,2), 2.
1)
=
=
2) 

Рівняння шуканої дотичної у – у0 =
. Оскільки х0 = 1, у = х2, то
і 
Отже, у – 1 = 2 (х -1) або у = 2х – 1.
2. Фронтальна бесіда за запитаннями №№ 11 – 17 із Запитання і завдання до розділу VII.
II. Сприймання і усвідомлення знань про похідну сталої функції, степеневої функції з цілим показником
На попередньому уроці ми довели, що похідна лінійної функції у =
дорівнює
, тобто
.
Якщо покласти
, де С – довільна постійна, то одержимо, що тобто похідна постійної функції дорівнює 0.
Якщо у формулі
покласти
, то одержимо
Нам уже відомо, що . А як знайти похідну функції у = х5, у = х20 тощо? Розглянемо функцію у= хn, де n –
.
Знайдемо похідну цієї функції, для цього зафіксуємо значення аргумента х0 і надамо йому приросту
, тоді:
1) 
2) 
(Скориставшись формулою 
3) 
Звідси
Розглянемо функцію у = хn-1, де
.
Знайдемо похідну цієї функції, для цього зафіксуємо значення аргумента х0 і надамо йому приросту
, тоді
1) 
2) 


3)
=

Отже,
, де
.
Таким чином виконується рівність:
.
Виконання вправ
1. Знайдіть похідну функції:
а) у = х6; б) у = х8; в) у = х2
; г)
.
Відповідь: а) 6х5; б) 8х7; в) 7х6; г) 6х5.
2. Знайдіть похідні функцій:
а) у = х-10; б) у = х2
; в)
; г)
.
Відповідь: а) -10х-11; б) -3х-4; в) -6х-7; г) -6х-7.
ІІІ. Сприймання і усвідомлення знань про похідну тригонометричних функцій
Знайдемо похідну функції у=
. Зафіксуємо х0 і надамо аргументу приросту
, тоді:
1) 
2) 
3) 
.
Отже
Аналогічно можна довести, що
Знайдемо похідну функції
.
Зафіксуємо х0 і надамо аргументу приросту
, тоді:

.

.
Отже,
Аналогічно можна довести, що
Виконання вправ № 1 (3), 5 із підручника.
VI. Підведення підсумків уроку
Провести підведення підсумків уроку з використанням таблиці 4 похідних.
Таблиця
Таблиця похідних
(хn)=n
;
;
(
;
;
.
V. Домашнє завдання
Розділ VІІ § 3. запитання і завдання для повторення розділу VІІ № 19 – 22. вправа №4 (2, 4).
ТЕМА УРОКУ: Теореми про похідну суми, добутку і частки функцій
МЕТА УРОКУ: Вивчення теореми про похідні суми, добутку і частки функцій, формування умінь учнів у знаходження похідних.
І. Перевірка домашнього завдання
1. Усне розв’язування вправ.
1) Знайдіть похідні функцій
а) у – х10; б)
; в)
; г)
.
Відповідь: а) 10х9; б) -9х-10; в) -4х-5;ё г) 3х2.
2) Знайдіть похідні функцій:
а)
в точці
; б)
в точці
;
в)
в точці
; г)
в точці
.
Відповідь: а) 0; б)
; в) 4; г) -1.
2. Відповісти на запитання, що виникли у учнів під час виконання домашніх вправ.
ІІ. Сприймання і усвідомлення теореми про похідну суми функції
Теорема: Якщо функції f(x) і g(x) диференційовані в точці х, то їхня сума диференційована в цій точці і

або коротко говорять: похідна суми дорівнює сумі похідних.
Доведення
Розглянемо функцію
у = f(x) + g(x).
Зафіксуємо х0 і надамо аргументу приросту
. Тоді

,
.
Отже,
.
Наслідки
а) Похідна різниці дорівнює різниці похідних.
Нехай у(х) = f(x) - g(x), тоді f(x) = у(х) + g(x) і
, звідси
.
б) Похідна суми декількох функцій дорівнює сумі похідних цих фукцій, тобто
.
Приклад. Знайдіть похідну функцій
а)
;
б)
;
в)
.
Розв’язання а)
;
б)
.
в)
.
Відповідь: а) 
; б)
в)
=
.
Виконання вправ
1. Знайдіть похідні функцій:
а) у = х3 + х – х4; б)
;
в)
; г)
.
Відповідь: а)
; б)
; в)
;
г)
.
2. Знайдіть значення похідної функції f(x) в точці х0:
а)
;
б)
;
в)
.
Відповідь: а) 1; б)
; в)-1.
3. При яких значеннях х значення похідної функції f(x) дорівнює 0:
а)
; б)
; в)
.
Відповідь: а)
; б)
; в)
.
ІІІ. Сприймання і усвідомлення теореми про похідну добутку
Теорема. Якщо функції f(x) і g(x) диференційовані в точці х, то їхній добуток також – диференційована функція в цій точці і
, або коротко говорять: похідна добутку двох функцій дорівнює сумі добутків кожної функції на похідну другої функції
Доведення. Розглянемо функцію
. Зафіксуємо х0 і надамо аргументу приросту
, тоді
1) 
Оскільки
,
, то

.
2) 

.
Отже,
.
Наслідки
а) Постійний множник можна винести за знак похідної:
.
Дійсно,
.
б) Похідна добутку декількох множників дорівнює сумі добутків похідної кожного із них на всі останні, наприклад:
.
Приклад. Знайдіть похідні функцій:
а)
;
б)
;
в)
.
Розв’язування
а)
;
б) 
;
в) 

.
Виконання вправ.
1. Знайдіть похідну функцій:
а)
; б)
;
в)
; г)
.
Відповідь: а) 6х-5; б)
;
в)
; г)
.
2. Знайдіть похідні функцій:
а)
; б)
;
в)
; г)
.
Відповідь: а)
; б)
;
в)
; г)
.
3. Знайдіть похідні функцій:
а)
; б)
.
Відповідь: а)
; б)
.
IV. Сприймання і усвідомлення теореми про похідну частки функцій
Теорема. Якщо функції f(x) і g(x) диференційовані в точці х і g(x)
, то функція
диференційована в цій точці і
.
Доведення
Формулу похідної частки можна вивести, скориставшись означенням похідної. Проте це зробити можна простіше.
Нехай
, тоді f(x)=у(х)
. Знайдемо похідну функції f(x), скориставшись теоремою про похідну добутку,
. Виразимо з цієї формули 

і підставимо замість у(х) значення
, тоді будемо мати:
.
Отже, 
.
Приклад: Знайдіть похідні функцій
а)
; б)
.
Розв’язання
а)
.
б)
.
Виконання вправ
1. Знайдіть похідні функцій:
а)
; б)
; в)
; г)
.
Відповідь: а)
; б)
;
в)
; г)
.
2. Знайдіть похідні функцій:
а)
; б)
; в)
; г) 
Відповідь: а)
; б)
;
в)
; г)
.
V. Домашнє завдання
Розділ VII § 4. Запитання і завдання для повторення розділу VII № 23 – 27. вправа № 10 (1 -5, 7 - 8).
ТЕМА УРОКУ: Похідна складеної функції
Мета уроку: Формування поняття про похідну складеної функції, знань учнів про похідну складеної функції, умінь знаходити похідну складеної функції.
І. Перевірка домашнього завдання
1)
;
2) 
;
3) 
;
4)
;
5)
;
6)
.
2. Самостійна робота.
Варіант 1.
1. Знайдіть значення похідної функції f(x) при заданому значенні аргументу х0:
а)
, х0=-1. (2 бали)
б)
. (2 бали)
2. Знайдіть похідну функцій:
а)
. (2 бали)
б)
. (2 бали)
в)
. 42 бали)
Варіант 2.
1. Знайдіть значення похідної функції f(x) при заданому значенні аргумента х0:
а)
, х0=-1. (2 бали)
б)
. (2 бали)
2. Знайдіть похідну функцій:
а)
. (2 бали)
б)
. (2 бали)
в)
. 42 бали)
Відповідь: В-1. 1. а)
; б) -1
2. а)
; б)
; в) 
В-2. 1. а)
; б) 1
2. а)
; б)
; в)
.
ІІ. Сприймання і усвідомлення поняття складеної функції та її похідної
Розглянемо приклад.
Приклад 1. Нехай треба обчислити по заданому значенню х значення функції у, яка задана формулою
.
Для цього спочатку треба обчислити за даним значенням х значення u=
, а потім за значенням u обчислити у=
.
Отже, функція g ставить у відповідність числу х число u, а функція f – числу u число у. Говорять, що у є складеною функцією із функції g і f, і пишуть
.
Функцію g(х) називають внутрішньою функцією, або проміжною змінною, функцію f(u) – зовнішньою функцією. Отже, щоб обчислити значення складеної функції
в довільній точці х, спочатку обчислюють значення u внутрішньої функції g, а потім f(u).
Приклад 2. Розглянемо функцію
. Вона є складною із функцій
, де
- внутрішня функція,
- зовнішня функція.
Приклад 3. Запишіть складні функції
і
, якщо

Розв’язання


Виконання вправ.
1. Задайте формулою елементарні функції
і
, із яких побудована складна функція
:
а)
б) 
в)
г) 
Відповіді: а)

б)
;
в)

г)
.
2. Дано функції:
. Побудуйте функції:
а)
; в)
; в)
;
г)
; в)
; є)
.
Відповідь: а)
; б)
;
в)
; г)
;
д)
є) 
У складній функції
присутня проміжна змінна
. Тому при знаходженні похідної складної функції ми будемо вказувати, по якій змінній взято похідну, використовуючи при цьому спеціальні показники:
– похідна функції у по аргументі х;
– похідна функції у по аргументі u;
– похідна функції u по аргументі х;
Теорема. Похідна складеної функції
знаходиться за формулою
, де
, або похідна складеної функції дорівнює похідній зовнішньої функції по проміжній змінній, помноженій на похідну внутрішньої функції по основному аргументу.
Доведення
Будемо вважати, що функція
має похідну в точці х0, а функція
має похідну в точці u0=
, тобто існують границі
,
і
.
Нехай, аргументу х0 надано приросту
, тоді змінна u набуде приросту
. Поскільки
одержала приріст
, то функція у одержить також приріст
. Приріст
зумовив виникнення приросту
і
.
Подамо
. Перейдемо до границі при
(при цьому ).
або
.
Приклад 1. Знайдіть похідну функції у = (3х3-1)5.
Розв’язання
у = (3х3-1)5 – складена функція
, де u =3х3-1, тоді
, 
.
При обчисленні похідної складеної функції явне введення допоміжної букви u для позначення проміжного аргументу не є обов’язковим. Тому похідну даної функції знаходять відразу як добуток похідної степеневої функції u5 на похідну від функції 3х3-1:
.
Приклад 2.Знайдіть похідні функцій:
а)
; б)
;
в)
; г)
.
Розв’язання
а)
;
б)
;
в)
;
г)
.
Виконання вправ.
1. знайдіть похідні функцій:
а) у = (3х+2)50; б) (6-7х)10;
в)
; г)
.
Відповідь: а)
; б)
;
в)
; г)
.
2. Знайдіть похідні функцій:
а)
; б)
;
в)
; г)
.
Відповідь: а)
; б)
;
в)
; г)
.
ІІІ. Підведення підсумків уроку
При підведенні підсумків уроку можна скористатись таблицею.
Таблиця диференціювання






,де 
IV. Домашнє завдання
Розділ VII § 4. запитання і завдання для повторення до розділу VII № 23–28. вправа № 10 (6, 10, 14, 22).
ТЕМА УРОКУ: Похідна показникової, логарифмічної та степеневої функцій
Мета уроку: Формування знань учнів про похідну показникової, логарифмічної та степеневої функції(з довільним дійсним показником), умінь учнів в знаходженні похідних функцій.
І. Перевірка домашнього завдання
1.Перевірити правильність виконання домашніх вправ за записами, зробленими на дошці.
6)
;
10)
;
11)
;
22)
.
2. Виконання усних вправ.
Знайдіть похідні функцій, які подано в таблиці.
Таблиця
1
2
3
4
1

2





3

=


4




ІІ. Сприймання і усвідомлення матеріалу про похідну показникової функції
Перш ніж знаходити похідну показниковїх функції, зробимо два важливих зауваження. Графік функції у=ах проходить через точку (0; 1). Нехай
– величина кута , утвореного дотичною до графіка функції у = ах в точці (0; 1)з додатним напрямом осі абсцис. Величина цього кута залежить від значення основи а. Наприклад, обчислено, що при а = 2 величина кута
приблизно дорівнює 340(рис.29), а при а = 2,
=470.
у у = ех якщо основа а показникової функції у = ах зростає від 2 до 3, то величина кута
зростає і приймає значення від 340 до 470. Отже, існує таке значення
, при якому дотична, проведена до графіка функції у = ах в точці (0; 1) утворює з додатним напрямком осі ОХ кут 450 (рис.31). Таке значення
прийнято позначати буквою е, е – число ірраціональне, е = 2,718281828459...
0
Таким чином, дотична до графіка функції у = ех в точці (0; 1) утворює з додатним напрямком осі абсцис, який дорівнює 450.
У відповідності з геометричним змістом похідної даний висновок означає, що значення похідної функції
в точці х0 дорівнює
=1. Отже,
.
Знайдемо тепер формулу похідної функції
.
Нехай аргумент х0 одержав приріст
, тоді:
1) 
2) 
3)
.
Таким чином, похідна функції ех дорівнює самій функції: 
Знайдемо похідну функції
, скориставшись основною логарифмічною тотожністю та правилом знаходження похідної складеної функції:
.
Отже, 
Похідна показникової функції дорівнює добутку цієї функції на натуральний логарифм її основи.
Приклад 1. Знайдіть похідну функцій:
а) у = 5х; б) у = е3-2х; в)
; г)
.
Розв’язання
а)
;
б)
;
в)
;
г)
.
Виконання вправ.
№ 2 (2, 4, 6, 8, 10, 12), №2 (20, 22, 24, 26, 28, 30) із підручника (розділ Х).
ІІІ. Сприймання і усвідомлення матеріалу про похідну логарифмічної функції
Розглянемо функцію
. За основною логарифмічною тотожністю:
для всіх додатних х.
Диференціюючи обидві частини цієї рівності, одержимо:
, або
.
Звідси
.
Отже,
Знайдемо похідну функції
. Так як
, то

.
Отже,
Приклад 1. Знайдіть похідну функцій:
а)
; б)
;
в)
; г)
.
а)
;
б)
;
в)
;
г) 
=
.
Виконання вправ.
№ 2 (14, 16, 18, 32, 34, 36, 38, 40, 42), із підручника (розділ Х).
IV. Сприймання і усвідомлення матеріалу про похідну степеневої функції
, де 
Ми довели, що
для
.
Розглянемо функцію
, де
.
Знайдемо похідну цієї функції:

.
Отже, 
для всіх
.
ТЕМА УРОКУ: Розв’язування вправ
Мета уроку: Формування умінь учнів знаходити похідні функцій.
І. Перевірка домашнього завдання
1 перевірити правильність виконання домашніх вправ шляхом порівняння відповідей.
№ 2. 3) -е-х; 5)
; 7)
; 9)
; 11) 
13)
; 15) 
; 17)
.
№ 8. 1) 100х99; 3)
; 5)
; 7) -20х19; 9)
;
11)
.
2. Усне розв’язування вправ.
Знайдіть похідні функцій, поданих в таблиці.
1
2
3
4
5
1




2










3





4




5





ІІ. Формування умінь знаходити похідні функцій
Виконання вправ № 10 (12; 11; 13; 17; 19) розділу VІІ підручника.
Виконання вправ № 2 (23; 24; 31; 34; 35; 36) розділу Х підручника.
Знайдіть похідну функції
та обчисліть її значення, якщо .

.
.
Відповідь: 4.
4) Тіло рухається за законом
.
Знайдіть швидкість точки через 2 секунди після початку руху. (Відстань вимірюється в метрах).
Розв’язання
;

.
Відповідь:
.
ІІІ. Домашнє завдання
Підготуватися до контрольної роботи. Вправи ; 10 (15; 16; 20; 25) розділу VІІ; № 2 (22; 26; 38; 42), 8 (14; 18) розділу Х.
ТЕМА УРОКУ: Тематична контрольна робота № 1
Мета уроку: Перевірити навчальні досягнення учнів з теми „Границя, неперервність та похідна функцій”.
Варіант 1
1. Знайдіть похідну функції:
а)
. (2 бали)
б)
. (2 бали)
в)
. (2 бали)
г)
. (2 бали)
2. Знайдіть похідну функції
та обчислити її значення, якщо
. (2 бали)
3. Точка рухається за законом
. Знайдіть миттєву швидкість точки моменту t=1 с (s вимірюється в метрах). (2бали)
Варіант 2
1. Знайдіть похідну функції:
а)
. (2 бали)
б)
. (2 бали)
в)
. (2 бали)
г)
. (2 бали)
2. Знайдіть похідну функції
та обчислити її значення, якщо
. (2 бали)
3. Точка рухається за законом
. Знайдіть миттєву швидкість точки моменту t=1 с (s вимірюється в метрах). (2бали)
Варіант 3
1. Знайдіть похідну функції:
а)
. (2 бали)
б)
. (2 бали)
в)
. (2 бали)
г) . (2 бали)
2. Знайдіть похідну функції
та обчислити її значення, якщо
. (2 бали)
3. Точка рухається за законом
. Знайдіть миттєву швидкість точки моменту t=5 с (s вимірюється в метрах). (2бали)
Варіант 4
1. Знайдіть похідну функції:
а)
. (2 бали)
б)
. (2 бали)
в)
. (2 бали)
г)
. (2 бали)
2. Знайдіть похідну функції
та обчислити її значення, якщо
. (2 бали)
3. обертання тіла навколо осі здійснюється за законом
. Знайдіть кутову швидкість точки при t=4 с (
вимірюється в радіанах). (2бали)
Відповідь: В-1. 1. а)
; б)
;
в)
,; г)
.
2.
,
.
3. 10 
В-2 1. а)
; б)
;
в)
,; г)
.
2. ,
.
3. 9 
В-3. 1. а)
; б)
;
в)
,; г)
.
2.
,
.
3. 35 
В-4. 1. а)
; б)
;
в)
,; г)
.
2.
,
.
3. 20 
Нравится материал? Поддержи автора!
Ещё документы из категории педагогика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ