6 задач по теории электрических цепей
чЗадание 1
İ1 İ2 İ3 I4 İ5 ŮC ŮR1 ŮR2 ŮR3 ŮL (3) (2) (1) (0) Ů(0) Ů(30) Ů(20) Ů(10) Ė L C R1 İ R3 R2
Параметры электрической цепи:
R1 = 1.1 кОм L = 0,6 · 10-3 Гн E = 24 В
R2 = 1.8 кОм C = 5.3 · 10-10 Ф I = 29 · 10-3 A
R3 = 1.6 кОм ω = 6.3 · 105 Гц
1). Используя метод узловых напряжений, определить комплексные действующие значения токов ветвей и напряжений на элементах цепи:
Составляем систему уравнений методом узловых напряжений:
Для узла U(10) имеем :
Для узла U(20) имеем:
Для узла U(30) имеем :
0
Вычисления полученной системы уравнений проводим в программе MATCAD 5.0 имеем :
Ů(10) =
Ů(30) =
Находим действующие комплексные значения токов ветвей (используя программу MATCAD 5.0) :
Определяем действующие напряжения на єэлементах:
2). Найти комплексное действующее значение тока ветви, отмеченной знаком *, используя метод наложения:
Выключая поочередно источники электрической энергии с учетом того, что ветви содержащие источник тока представляют собой разрыв ветви, а источники напряжения коротко замкнутые ветви имеем:
После исключения источника напряжения составим цепь представленную ниже:
R2
R3
İ
R1
C
L
(0)
(1)
(2)
(3)
İ1
Для полученной схемы составляем уравнения определяющее значение тока İ1.
Имеем:
После исключения источника тока имеем следующую схему:
R2
R3
R1
C
L
(0)
(1)
(2)
(3)
İ2
Ė
Для полученной схемы определим ток İ 2
Результирующий ток ветви отмеченной звездочкой найдем как сумму İ1 и İ2 :
İ ветви = İ1 + İ2 = 0,005 + 0,007j=
Топологический граф цепи:
1
2
3
4
5
6
(0)
(I)
(II)
(III)
Полная матрица узлов:
ветви
узлы
1
2
3
4
5
6
0
-1
0
0
-1
-1
0
I
1
-1
0
0
0
1
II
0
1
1
0
0
-1
III
0
0
-1
1
1
0
Сокращенная матрица узлов
ветви
узлы
1
2
3
4
5
6
I
1
-1
0
0
0
1
II
0
1
1
0
0
-1
III
0
0
-1
1
1
0
Сигнальный граф цепи:
İ
Ė
Ů(10)
Ů(20)
Ů(30)
ЗАДАНИЕ 2
C
C
L
R
Rn
e
I1
I2
I3
U1
U2
U3
U5ё U4
Параметры электрической цепи
С = 1.4 ·10-8Ф Rn = 316,2 Ом
L = 0.001 Гн
R = 3.286 Ом
Рассчитать и построить в функции круговой частоты АЧХ И ФЧХ комплексного коэффициента передачи цепи по напряжению:
Находим комплексный коэффициент передачи по напряжению
Общая формула:
Определяем АЧХ комплексного коэффициента передачи цепи по напряжению:
Строим график (математические действия выполнены в MATCAD 5.0)
Определяем ФЧХ комплексного коэффициента передачи цепи по напряжению, по оси ординат откладываем значение фазы в градусах, по оси обцис значения циклической частоты
Найти комплексное входное сопротивление цепи на частоте источника напряжения:
вх
Комплексное входное сопротивление равно:
Определяем активную мощность потребляемую сопротивлением Rn:
Pактивная = 8,454·10-13
Задание 3
L
R
C
Ri
I
IC ILR
Параметры электрической цепи:
L = 1.25·10-4 Гн
С = 0,5·10-9 Ф
R = 45 Ом Rn = R0
R0 = 5,556·103 – 7,133j Ri = 27780 – 49,665j
определить резонансную частоту, резонансное сопротивление, характеристическое сопротивление, добротность и полосу пропускания контура.
Резонансная частота ω0 = 3,984·106 (вычисления произведены в MATCAD 5.0)
Резонансное сопротивление:
Характеристическое сопротивление ρ в Омах
Добротность контура
Полоса пропускания контура
Резонансная частота цепи
ω0 = 3,984·106
Резонансное сопротивление цепи
Добротность цепи
Qцепи = 0,09
Полоса пропускания цепи
Рассчитать и построить в функции круговой частоты модуль полного сопротивления:
Рассчитать и построить в функции круговой частоты активную составляющую полного сопротивления цепи:
Рассчитать и построить в функции круговой частоты реактивную составляющую полного сопротивления цепи:
Рассчитать и построить в функции круговой частоты АЧХ комплексного коэффициента передачи по току в индуктивности:
Рассчитать и построить в функции круговой частоты ФЧХ комплексного коэффициента передачи по току в индуктивности:
Рассчитать мгновенное значение напряжение на контуре:
Ucont = 229179·cos(ω0t + 90˚)
Рассчитать мгновенное значение полного тока на контуре:
Icont = 57,81cos(ω0t + 90˚)
Рассчитать мгновенное значение токов ветвей контура:
ILR = 646cos(ω0t + 5˚)
IC = 456,5cos(ω0t - 0,07˚)
Определить коэффициент включения Rn в индуктивную ветвь контура нагрузки с сопротивлением Rn = Ro, при котором полоса пропускания цепи увеличивается на 5%.
Ri
C
R
Rn
L
L1
L2
İ
C C C
Данную схему заменяем на эквивалентную в которой параллельно включенное сопротивление Rn заменяется сопротивлением Rэ включенное последовательно:
Ri
C
R
Rэ
L
İ
Выполняя математические операции используя программу MATCAD 5.0 находим значение коэффициента включения KL :
Задание 4
e
R
R
C
C
L
L
Параметры цепи:
e(t) = 90sinωt = 90cos(ωt - π/2)
Q = 85
L = 3.02 · 10-3 Гн
С = 1,76 • 10-9 Ф
Рассчитать параметры и частотные характеристики двух одинаковых связанных колебательных контуров с трансформаторной связью, первый из которых подключен к источнику гармонического напряжения.
определить резонансную частоту и сопротивление потерь R связанных контуров:
2. Рассчитать и построить в функции круговой частоты АЧХ И ФЧХ нормированного тока вторичного контура при трех значениях коэффициента связи Ксв = 0.5Ккр (зеленая кривая на графике), Ксв = Ккр (красная кривая на графике), Ксв = 2Ккр (синяя кривая на графике), где Ккр – критический коэффициент связи.
ФЧХ нормированного тока вторичного контура при трех значениях коэффициента связи Ксв = 0.5Ккр (зеленая кривая на графике), Ксв = Ккр (красная кривая на графике), Ксв = 2Ккр (синяя кривая на графике), где Ккр – критический коэффициент связи.
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = 0,5Ккр
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = Ккр
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = 2Ккр, а так же частоты связи.
Задание5
S
R
L
e
Рассчитать переходный процесс в электрической цепи при включении в нее источника напряжения e(t) амплитуда которого равна E = 37 и временной параметр Т = 0,46 мс, сопротивление цепи R = 0.9 кОм, постоянная времени τ = 0.69.
Определить индуктивность цепи, а так же ток и напряжение на элементах цепи
Гн
Так как данная цепь представляет собой последовательное соединение элементов, ток в сопротивлении и индуктивности будет одинаковым следовательно для выражения тока цепи имеем:
Исходное уравнение составленное для баланса напряжений имеет вид:
Заменяя тригонометрическую форму записи напряжения е(t) комплексной формой
Имеем:
Используя преобразования Лапласа заменяем уравнение оригинал его изображением имеем:
Откуда
Используя обратное преобразование Лапласа находим оригинал I(t):
Переходя от комплексной формы записи к тригонометрической имеем
Определяем напряжение на элементах цепи
Задание 6
C
C
L
R
Параметры четырехполюсника
С = 1.4 ·10-8Ф
L = 0.001 Гн
R = 3.286 Ом
ω = 1000 рад/с
Рассчитать на частоте источника напряжения А параметры четырехполюсника:
Параметры А11 и А21 рассчитываются в режиме İ 2 = 0
İ1
İ2
C
L
R
Ů1
Ů2
Параметры А12 и А22 рассчитываются в режиме Ŭ 2 = 0
İ1
İ2
C
L
R
C
R
Ů1
Ů2
Исходная матрица А параметров четырехполюсника:
Оглавление
Задание 1 стр.1-7
Задание 2 стр.8-11
Задание 3 стр.12-18
Задание 4 стр.13-23
Задание 5 стр.14-27
Задание 6 стр.27-30
1
Нравится материал? Поддержи автора!
Ещё документы из категории радиоэлектроника :
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ