Реферат о прочитаной на немецком языке литературы

Міністерство Освіти України

Український Державний Морський Технічний Університет






Кафедра сучасних мов


Реферат

з прочитаною німецькою мовою літератури за спеціальностью 050805 “Суднові енергетичні установки”

по темі “Підвищення ефективності процесу згорання шляхом оптимізації роботи двигуна на паливі широкого фракційного складу”




Науковий керівник

Тимошевський Б.Г.


Аспірант:

Нейман О.А.


Викладач:

Єганова Л.Л.




Миколаїв 2002г.

Содержание



Die wissenschaftliche Arbeit 3

Der kleine MaK-SchweröImotor M 332 C. 5

Малый двигатель MaK М332 C на тяжелом топливе. 13

Das Wörterbuch 23

Литература 27






Die wissenschaftliche Arbeit


Seit 2001 studiere ich in der Aspirantur, nachdem ich die Aufnahmeprüfung im Spezialfach in der (Fremdsprache und Philosophie) abgelegt habe.

Der WissenschaftlicheRat hat das Dissertationsthema: ”Die Erhöhung der Effektivität des Verbrennprozesses durch die Optimisation des Motorbetriebs mit Treibstoff von der breiten Fraktionzusammensetzung” bestätigt.

Ich besuche Lehrgänge in einer Fremdsprache und Philosophie, und sammele auch das wissenschafliche Material.

Mein wissenschaftlicher Betreuer ist der Leiter des Lehrstuhls für Schiffverbrennungsmotore Professor Timoschewskij B.G..

Der Zweck meiner wissenschaftlichen Arbeit besteht im ausführlichen Studium des Prozeßes der Verbrennung im Diselmotor und in der Bestimmung der optimalen Parameter für den Brennstoff mit der breiten Fraktionzusammensetzung. Diese Aufgabe lösen viele Konstruktionsbüros im weltumfassenden Maschinenbau. Man braucht einen Motor mit guten leistungsfähigen und ökonomischen Kennziffern auf Kosten von Optimierung nicht der Bauteile des Motores, sondern seiner Prozeβe. Das Studium des Prozeßes der Verbrennung in den Diselmotoren für Treibstoff von der breiten Fraktionzusammensetzung ermöglicht, die optimale Zusammensetzung der Mischung zu bestimmen.

Diese Arbeit ist auf die Bestimmung des mathematischen Modells des Prozeßes der Verbrennung und die Methodik der Rechnung für den Brennstoff der breiten Fraktionzusammensetzung gerichtet. Nach dem Erhalten der Methodik prüft man sie auf dem speziell entwickelten Stand. Er stellt einen Motor mit der zu ihm angeschlossenen Apparatur für die Abnahme der Anzeigekennziffern von der Ecke der Wendung des Kurbelwalles, solcher wie der Druck und die Temperatur dar.Für meine Versuch möchte ich den Diselmotor 6ЧН 12/14 und die Diagnostikaparatur “Sapphir” ausnutzen. Die Elektronenrechenmaschine wird die Ergebnisse fixieren und bearbeiten. Das Zusammenfallen der experimentalen Kennziffern mit den Kennziffern, die bei der Rechnung nach der Methodik bekommen sind, werden die Bestätigung .

In meiner wissenschaftlichen Arbeit bemühe ich mich , die Möglichkeiten für die Forschung auf diesem Gebiet am breitesten zu benutzen. Es wird die Literatur der zahlreichen Methodiken über das Thema der Optimierung der Prozeße der Arbeit des Motores durchstudiert, es geht die Suche nach der neuen Artikeln und der Publikationen im Iternet, es werden verschiedene mathematische Modelle studiert.

Die Ganze wissenschaftliche Literatur, auf die ich mich in der eigenen Arbeit stütze, gehört im Grunde der fundamentalen Literatur . Und nur ein kleiner Teil beschreibt die neuen Erarbeitungen auf dem Gebiet des Diselmotorenbaus.

Dank des Studiums der Fremdsprache im Programm der Vorbereitung der Aspiranten , kann man in einer Reihe von den ausländischen Publikationen die fehlende Information finden. Besonders helfen die Kenntnisse der Sprachen bei der Arbeit in dem Internet.

Der deutsche Motorenbau ist gegenwärtig ein anerkannter weltumfassender Führer . Die führenden deutschen Hersteller der Diselmotoren verbrauchen Millionen DM für die Forschung der Motoren. Deshalb ist die Literatur der deutschen wissenschaftlichen Verlage am heutigen Tag jener Grund auf dem zahlreichen wissenschaftlichen Arbeiten vieler Gelehrten gebaut werden.

Ich hoffe , daß die Kenntnisse, die ich bei dem Studium der deutschen Sprache erwerben hat, in der Suche nach den Quellen für meine Arbeit wesentlich helfen werden. Sowie für den möglichen Austausch von der Erfahrung mit den ausländischen Kollegen mit Hilfe der Korrespondenz.


Der kleine MaK-SchweröImotor M 332 C.

Die Krupp MaK-Bauserie M 332 blickt auf eine längere Entwicklungsgeschichte zurück. Sie entstand Mitte der 70er Jahre als Langhubversion der Krupp MaK-Bauserie M 282 und übernahm gleichzeitig den Erfahrungsstand der damals auslaufenden Bauserie M 351.

Die Bauserie M 332 konnte sich in all den Jahren in dem wichtigen Drehzahlbereich 720-900 U/min gut konsolidieren und läuft in großen Stückgutzahlen sowohl im Schiffshauptantrieb als auch im stationären bzw. bordgebundenen Generatorantrieb.

Entsprechend der Zielsetzung des Krupp MaK-C-Motorenkonzeptes wurde die M 332-Bauserie komplett überarbeitet und auf einen neuen technischen Stand gebracht.

Das Ergebnis sind 6- und 8-Zylinder-Schwerölmotoren im Leistungsbereich 1000-1600 kW, die in jeder Beziehung auf geringsten Finanzmittelverbrauch optimiert sind.

1. Konzept

Krupp Mak hat durch eine schwerölgerechte Brennraumgestaltung — in Verbindung mit einer optimal angepaßten Einspritzung — ein Brenngesetz erreicht, das der sogenannten Gleichdruckverbrennung des idealen Dieselprozesses sehr nahe kommt. Die weitgehende Annäherung an den Gleichdruckprozeß bedeutet für den Dieselmotor den besten ther-modynamischen Wirkungsgrad bei gleichzeitig niedrigster Bauteilbelastung durch Zünddruck. Durch eine Vielzahl von Kreisprozeßrechnungen war es möglich, die Verbrennungsparameter auf dieses Ziel auszurichten. Der Erfolg wurde in der Praxis nachgewiesen.

Trotz des hohen thermodynamischen Wirkungsgrades konnte der Zünddruck des Motors in abgesicherten Grenzen gehalten werden. Auch die Erregung für diverse Schwingungen und Vibrationen konnte verringert werden.

Der Verbrennungsablauf ist aufgrund der geringen Druckanstiegsgeschwindigkeit von ca. 3 bar/Grad Kurbelwinkel weicher geworden.

Nachteile dieses weichen Verbrennungsverfahrens haben sich in der Praxis nicht ergeben. Im Gegenteil, der geringe Kraftstoffverbrauch in Verbindung mit der sehr sauberen Verbrennung wird belohnt durch rauchfreien Auspuff und geringe Schmierölverschmutzung.

2. Grundlage

Der Pionier dieses Entwicklungskonzeptes ist der M 453 C, der 1987 in den Markt eingeführt wurde und seitdem in Schiffahrt und stationärem Betrieb arbeitet. Insgesamt konnten von diesem Motor bereits über 100 Maschinen verkauft werden. Zeitlich gestaffelt wurde der M 552 C nach den gleichen Gesetzmäßigkeiten umkonstruiert und erwies sich schon im frühen Versuchsstadium in seinen Reaktionen im Verbrennungsablauf, den Druckanstiegsgeschwindigkeiten und in der Abgasqualität dem M 453 C als sehr ähnlich. Im Zuge der Weiterentwicklung wurden deshalb alle Erkenntnisse auf den M 332 C übertragen.

3. Verbrennung

Da der M 332 C-Motor über einen Zylinderkopf mit zwei tangential einblasenden Einlaßkanälen verfügt, konnte ein definierter Luftdrall ohne schädliche innere Turbulenzen während der Einspritzung und Verbrennung abgestimmt werden.

Da der M 332-Motor mit 240 Kolbendurchmesser der kleinste und somit kostengünstigste Motor in der Familie der Krupp MaK-Mo-toren ist, wurden an diesem Motor die meisten Grundsatzuntersuchungen für die Weiterentwicklung der Brennraumgestaltung, der Einspritzung, der Schwerölverbrennung sowie der Aufladung vorgenommen.

Die Realisierungskonzepte der Gleichdruckverbrennung sollen hier nicht veröffentlicht werden; sie können bei erfolgter Abstimmung des Motors und Optimierung der Motorenparameter praktisch kaum verändert werden. Sie müssen somit vom Betreiber auch nicht gepflegt werden, denn die Grenzbereiche im Betriebsverhalten wurden sorgfältig analysiert. Eigens zu diesem Zweck wurden Versuchseinrichtungen mit mechanisch sowie elektronisch verstellbaren Einspritzausrüstungen, mit elektronisch gesteuerten Druckspeichereinspritzungen, mit extrem verstellbaren Abgasrohrgeometrien, mit variablen Turbineneintritten, mit Abblase- und Umblaseventilen, mit teilweise isolierten Kolben und teilweise extrem gekühlten Brennraumteilen entwickelt und in den Versuchsmotoren gefahren.

Zusätzlich wurden Meßreihen mit verschiedenen Brennräumen, Zylinderköpfen mit variablem Drall und natürlich eine große Anzahl Düsenvarianten gefahren, um das jeweilige Optimum abzutasten und um ein breitmögliches Optimum im Zusammenwirken der Einzelkomponente für die endgültige Serienausführung zu erarbeiten.

Da der Motor M 332 gleichzeitig über einen langen Kolbenhub verfügt, wurden grundsätzliche Parameterstudien in Abhängigkeit von Brennraumhöhe und Verdichtungsverhältnis gefahren.


Das Optimum aus Brennraumform und Verdichtungsverhältnis zu ertasten, stellt eine kostenintensive, aber thermodynamisch lohnende Arbeit dar. Dabei wurde besonders darauf geachtet, daß jedwedes Überspritzen des Kraftstoffes über den Kolbenrand auch bei Einspritzende vermieden wird. Die Versuche hatten wieder bestätigt, daß für einen sauberen Kolbenlauf im Feuersteg- und Ringbereich eine vollständige Abschirmung sichergestellt sein muß.

4. Kolben

Der Kolben wurde in seinem Brennraum- und Kolbenringbereich modifiziert, besteht aber nach wie vor aus einem Stahloberteil und einem Aluminiumunterteil. Der Kolbenkopf wird intensiv stark gekühlt; eigens zu diesem Zweck wurden die Ölwege im Motor — beginnend mit der Verteilerleitung über die Grundlageranschlüsse, Nutenwege in Lagerschalen, Bohrungen und Übertritten bis hin zum Kolbenbolzen — mittels größerer Querschnitte intensiv entdrosselt. Die Wirkung dieser Gesamtmaßnahme äußert sich in der angehängten Schmierölpumpe, deren Menge bei gleichem Druck um 30 % erhöht werden konnte.

Der Kolben erhält gehärtete Ringnuten. Obwohl nach langen Laufzeiten die Ringnuten durch Nachverchromen wieder auf Originalmaß aufgearbeitet werden können (Krupp MaK hat beste Erfahrungen mit diesem Verfahren), gestatten die reichlich dimensionierten Ringsteghöhen auch die Möglichkeit, Übermaßringe zu verwenden.

Des weiteren sind die Abmessungen von Kolbenringen und Ringstegen auf stabiles Druckverhalten im Ringpaket für den Neu-und den Verschleißzustand abgestimmt worden. Es ist bekannt, daß hier eine der wesentlichsten Ursachen für den Schmierölverbrauch liegt, und daß Druckverlaufsmessungen hinter den einzelnen Ringen unverzichtbar für die fachgerechte Abstimmung sind.


5. Zylinderkopf

Der Brennraumbereich des Zylinderkopfes wurde nach C-Erkenntnissen modifiziert und im konstruktiven und modelltechnischen Aufbau überarbeitet. Das Lastenheft sah eine Umstellung auf Sphäroguß GGG 60 — in Verbindung mit einer gießgerechten Umgestaltung vor. Bei dieser Gelegenheit wurden die Kühlwasserumgüsse im Bereich der Ventilsitzringe, aber auch im Bereich der Ventilführungsbuchsen, für geringste Warmverformung umgestaltet, um eine bestmögliche Anpassung der Ventilsitze bei Warm- und Kaltverformung im Betrieb zu erhalten. Die Ventile wurden aus der direkten Beheizung durch die Kraftstoffkeulen nach oben in den Bereich des Deckelbodens verlegt; ein Verfahren, das auch beim M 453 C und M 552 C Temperaturabsenkungen von 40°C am Ventil bewirkte. Die Dichtringe sind aus einem eindringfesten, aber bedingt verschleißbereitem Material gefertigt, welches einen guten Anpassungsverschleiß zum Ventil und besten Wärmedurchgang garantiert. Für eine gute Formbeständigkeit der Ventile sorgen „unten liegende" Krupp MaK-Drehvorrichtungen, deren Lage unter den Ventilfedern einen vibrationsarmen, störungsfreien Lauf sicherstellen.

Das C-Konzept beinhaltet generell eine tiefgreifende Überarbeitung der Wartungsfreundlichkeit. Dazu gehören Steckverbindungen und gut zugängliche, leicht lösbare Verschlüsse. Die Zugänglichkeit zu den vier Schrauben der Abgasrohrflansche würde deshalb durch Umkonstruktion der Abgasrohrverkleidung verbessert. Im übrigen sind alle Schrauben, einschließlich Pleuel und Zy-linderkopfschrauben, auf einfachste Weise mechanisch montierbar; zeitaufwendige Hydraulikmontagen können dank des 8-Schrau-ben-Zylinderkopfes vermieden werden. Alle Rohrleitungen, die die Montage des Zylinderkopfes stören, sind in verfügbare Freiräume verlegt worden.

6. Kastengestell

Das Material im Gestellbereich des Motors M 332 C ist von Grauguß auf Sphäroguß umgestellt worden. Diese Maßnahme erhöht die Betriebsfestigkeit des Bauteils auf das dreifache gegenüber Grauguß und reduziert die Sprödbrüchigkeit des Graugusses um den Faktor 10. Durch den Einsatz von Sphäroguß im Bereich hochbelasteter Bauteile wird die Lebensdauer des Motors wesentlich verlängert. Dies führt u. a. auch zu besseren Wiederverkaufswerten bei SecondhandSchiffen. Das Kastengestell ist für eine stabile, radiale Führung der Laufbuchse im oberen Bundbereich bei gleichzeitiger intensiver Kühlung dieser Partie neukonstruiert worden.


7. Kurbelwelle

Die Kurbelwelle ist gesenkgeschmiedet aus einem hochwertigen Vergütungsstahl. Die Abmessungen wurden — entsprechend den neuen Richtlinien der Klassifikationsgesellschaften — überarbeitet. Zum Schutz vor hohen Lagerbelastungen wurde der volle Gegengewichtsbesatz vergrößert, Maßnahmen, die eine hohe Unempfindlichkeit gegen Lagerschäden garantieren. Die Verbesserung des Massenausgleiches reduziert zusätzlich die Krafteinleitungen im Bereich des Fundamentes.

8. Pleuelstange

Das Pleuel wird übernommen; es hat sich in der Vergangenheit 100% bewährt, ist einfach und leicht zu handhaben. Zur Verbesserung des Haftsitzes der Lagerschalen und Kolbenbolzenbuchse hat Krupp MaK eine spezielle Oberflächenstruktur entwickelt.

9. Lagerschalen

Bei den Lagerschalen ist Zinngalvanik heute Stand der Technik. Die tückischen Begleiterscheinungen der Korrosion in Bleigalvaniklagern sind damit als Problemkreis verschwunden. Des weiteren hat die Verwendung von zusätzlichen und schwereren Gegengewichten die Reibarbeiten in Grundlagern deutlich abgesenkt und die Betriebssicherheit der Kurbelwellenlagerung in einen Stand mit guten technischen Reserven versetzt. Besondere Freude bereiten in diesem Zusammenhang die Betriebserfahrungen mit den Rillenlagern, die offensichtlich eine zusätzliche Tragfähigkeit der Schmierfilme dadurch gewinnen, daß ihre Labyrinthdichtwirkung die Schmierölverdrängung aus dem Lager behindern. Die Ergebnisse sind hervorragend.

10. Laufbuchse


Wie bereits beim Kastengestell erwähnt, wird die Laufbuchse im oberen Bundbereich im Kastengestell geführt und intensiv mit Kühlwasser gekühlt. Die Führung der Buchse im Sphäroguß-Kastengestell ist viel unproblematischer als im Grauguß. Zum einen sind die Verformungen im Sphäroguß um den Faktor 1,6 geringer, weil der E-Modul von GGG 50 soviel höher ist, zum anderen ist ein hochfestes Sphärogußgestell mit seiner hohen Belastbarkeit eine bessere Stütze für die Laufbuchse. Die Laufbuchse ist nitriergehärtet. Krupp MaK hat dieses Verfahren seit Jahrzehnten in der Anwendung und es in Richtung auf größere Eindringtiefen weiterentwickelt.

Die homogene Härtung der Laufbuchse im Bereich des Kolbenringlaufes ohne jedwede Welligkeiten in der Folge von Teilhärtungen sichert den Ölverbrauch langfristig.


11. Einspritzung

Die zur Erzielung der Gleichdruckverbrennung erforderlichen Einspritzgesetze werden vertraulich behandelt. Bezüglich der erforderlichen Maximalkräfte und momente ist wichtig zu sagen, daß der gesamte Antrieb für Ventile und Kraftstoffpumpe einschließlich Nocken und Rollenbelastung bis hin zu den Zahnrädern abgesichert wurde.

Die Zahnräder dieser Motorenbaureihe sind seit Anfang der 70er Jahre einsatzgehärtet und geschliffen, und es hat seit der Zeit nicht einen einzigen Zahnradschaden gegeben.

Heute gehört zu dem C-Konzept der Krupp MaK-Motoren immer ein gehärteter Zahnradantrieb.

12. Abgasleitung

Die Motoren der Baureihe M 332 C werden mit der Stoßaufladung aufgeladen. Vollständigkeitshalber wurde auch hier eine Stau-Abgasleitung erprobt, die — wie bekannt — rechtgute Werte bei Vollast erzielt. Aber wegen der nahezu gleichhohen Drücke in Ladeluftleitung und Abgasleitung reagiert der Spülluftanteil sehr sensibel und unzulässig stark auf erhöhte Widerstände im Luft-Abgassystem oder auf geringe Wirkungsgradverluste bei Teillast. Selbst geringe Verschmutzungen der Luft und Abgaswege Ladeluftkühler, Turbinen- und Verdichterbereich sowie der Einbau eines Turbinenfanggitters führen zu einem starken Spüllufteinbruch und damit zu erhöhter thermischer Belastung.

Aus den Untersuchungen im Krupp MaK-Forschungsbereich mit variablen Abgasrohrsystemen und variablen Turbinenflächen ist ein 4-Strahl-Ejektor entwickelt worden. Dieser 4-Strahl-Ejektor führt die Abgasimpulse einer 8 M 332 in idealer Weise so zusammen, daß keine Störwellen zu den jeweils spülenden Nachbarzylindern zurücklaufen. In seiner Optimalabstimmung erzeugt der 4-Strahl-Ejektor sogar für die spülenden Zylinder einen zusätzlichen Unterdruck, der bisher unerreichbar hohe und gleichmäßige Spülgefälle an den Zylindern bewirkt.

Dieser Vorteil wirkt sich vor allem am Festpropellerbetrieb positiv aus, weil das hohe Druckgefälle zwischen Ladeluft und Abgas-leitung überdurchschnittlich große Spülluftdurchsätze herbeiführt. Der Abstand zur Pumpgrenze des Verdichters bleibt deshalb auch im gedrückten Propellerbetrieb sicher erhalten.

Bei der Konstruktion der Abgasleitung ist die Anordnung so gewählt, daß keinerlei Verspannungen an den Abgasflanschen entstehen. Die Kompensatoren sind gut zugänglich und die Abgasrohre sind so gestaltet, daß sie sowohl für den kupplungsseitigen als auch für den kupplungsgegenseitigen Turboladeran-bau passen.

Die Abgasrohrverkleidung ist vollkommen neu konstruiert und mit ihren Befestigungspunkten nur mit Gestellteilen verbunden. Im Bereich des Zylinderkopfes sind nur wenige Handgriffe nötig, um einzelne Übergangsbleche zu den Zylindern zu demontieren. Auf gute Zugänglichkeit zu den Schrauben am Zylinderkopf ist besonders geachtet worden. Die Schrauben sind in bezug auf Flankenspiel und Werkstoff für Hochtemperaturbetrieb und Heißmontage besonders angepaßt. Wird der Zylinderkopf demontiert, so sorgen geeignete Abstützungen für eine sichere Positionierung der Abgasleitung und der Anschlußflansche zum Zylinderkopf.


13. Aufladung

Eine wichtige Voraussetzung für den schiffsgerechten Schwerölbetrieb ist ein Turbolader,der schwerölfähig ist. In diesem Zusammenhang haben es sogenannte Radiallader schwer, weil der Aufbau ihrer Turbine einen Abgasstrom von außen nach innen, also gegen die Fliehkraft des rotierenden Turbinenlaufrades, erfordern. Folgt das Abgas auch noch willig dieser Richtung, so werden doch alle festen Verbrennungsrückstände in dem Moment nach außen zurückgeschleudert, wenn sie in den Schaufelbereich der Turbine gelangen. Diese zurückgeschleuderten Teile (sie werden durch den Abgasstrom ja immer wieder dem Laufrad zugeführt) erzeugen außen am Düsenring einen abrasiven Verschleiß, der die Standzeiten begrenzt. Turboladerhersteller und Motorenbauer lösen dieses Problem, jeder mit seinen Mitteln: Die Turboladerhersteller entwickeln verschleißfeste Düsenringe. Die ersten Langzeiterprobungen mit verschleißfesten Düsenringen über 4800 Stunden zeigen geringen Verschleiß. Die Krupp MaK leistete ihren Beitrag durch die Verminderung des Anteils fester Verbrennungsrückstände im Abgas durch die C-Motoren-Gleichdruckverbrennung (Non-Smoker).

Die Anpassung der Turboladerspezifika-tion erfolgte wie bei den anderen C-Motoren für ein optimales Zusammenspiel des Wirkungsgrades im gebräuchlichen Betriebslastbereich mit gleichzeitig starker „Büffelcharakteristik" im schwergängigen Propellerbetrieb. Die großen Spülluftdurchsätze haben entscheidend dazu beigetragen, daß eine weite Öffnung des Betriebskennfeldes erreicht wurde. Selbst Propellerkurven von 130 % laufen noch einwandfrei an der Pumpgrenze vorbei.

Zusammenfassung

Der Motor M 332 C setzt als robuste, kleine Schwerölmaschine mit starker Drehmomen-tencharakteristik die Reihe der Entwicklungen des Krupp MaK-C-Motorenprogrammes fort. Er faßt die Ergebnisse aus Forschung und Entwicklung der Einspritzung, Verbrennung und Aufladung ebenso zusammen wie die Erkenntnisse aus der Praxis der Schwerölverbrennung, der Betriebssicherheit und Wartungsfreundlichkeit sowie der Verbrauchswerte und Standzeiten.

Da der Motor über einen recht langen Kolbenhub verfügt, konnten die Parameter Verdichtungsverhältnis, geschlossener Brennraum und Einspritzgesetz in einem breiten Optimum gehalten werden. Das Drehmomentverhalten ist — dank der modifizierten Aufladung — noch besser als im herkömmlichen Stoßbetrieb.

Der geringe Anteil fester Verbrennungsrückstände im Abgas kommt diversen Bauteilen, wie Kolbenfeuersteg, Kolbenringen und Ventilen, der Sauberkeit des Schmieröles und der Schmierölfilter, dem Turbolader und dem Abgaskessel sowie den Menschen durch eine geringe Umweltbelastung zugute.

Besonderer Wert wurde auf Betriebssicherheit und wartungsfreundliche kundengerechte Ausführung gelegt. Dazu gehören jede standzeiterhöhende Maßnahme, die technisch abgesichert ist, sowie eine werkzeuggerechte Konstruktion.

Mit den erreichten guten Verbrauchswerten aufgrund der guten Verbrennung, deren breites Optimum auch in Verschleißgrenzbereichen erhalten bleibt, wurde die Wirtschaftlichkeit dieses Motors wesentlich gesteigert.

Damit stehen dem Leistungsbereich von 1000 bis 1600 kW im Drehzahlbereich von 720 bis 900 U/min hervorragende 6- und 8-Zylin-der-Schwerölmotoren für die 90er Jahre zur Verfügung.



Малый двигатель MaK М332 C на тяжелом топливе.


Строительная серия Круп МАК М332 имеет длинную эволюционную историю. Она возникала в середине 70-х как вариант подъема Круп МАК строительной серии М282 и использовала опыт, тогда выпускающейся строительной серии М351.

Строительная серия М332 смогла хорошо консолидировать себя, в то время, в важном диапазоне частоты вращения 720-900 об./мин., и использована в большом объёме, как в главном приводе судна, так и в стационарном соответственно связанный приводным механизмом генератора.

Соответственно постановки цели Круп МАК-C строительная серия М332 переделывалась окончательно и приводилась на новое техническое состояние.

Результатом являются 6-ти 8-ми цилиндровые двигатели на тяжелом топливе в рабочем диапазоне 1000-1600 kW, которые оптимизированы в каждом отношении на самое незначительное потребление финансовых средств.


  1. План


Круп МАК с помощью правильной формы камеры сгорания для тяжелого топлива - в сочетании с оптимально настроенным впрыскиванием достигнул закон горения, который при постоянном давлении идеального процесса дизеля почти совпадает. Далеко идущее приближение в процесс постоянного давления значит для дизельного двигателя самый хороший термодинамический коэффициент полезного действия при одновременно самой низкой нагрузке элемента конструкции максимальным давлением цикла. С помощью множество районных просчетов процесса это было возможно выравнивать параметры сгорания для этой цели. Успех подтвердился в практике.

Вопреки высокому термодинамическому коэффициенту полезного действия можно держать максимальное давление цикла двигателя в застрахованных границах. Также возбуждение для различных колебаний и вибраций может уменьшаться.

Протекание процесса горения стало более мягким на основе незначительной скорости повышения давления около 3 бар/ угол поворота коленчатого вала.

Недостатки этого мягкого процесса сгорания не отразились в практике. Наоборот, незначительный расход топлива в сочетании с бездымным сгоранием вознаграждается бездымным выпуском и незначительным загрязнением смазочных масел.


  1. Основа


Пионер этого плана развития является М453 C, который вводился в 1987 в рынок и работает с тех пор в судоходстве и стационарном режиме. Всего могло продаваться с этим двигателем около 100 машин. Выпущенный позже М552 C конструировался по таким же закономерностям и уже в ранней стадии опыта, реакции протекания процесса горения, скорости повышения давления и по качеству выхлопа М453 C, оказался похожим. В ходе модернизации все познания на М332 C переносились.


  1. Сгорание


Так как М332С дизель головка цилиндра имеет крышку цилиндра с двумя тангенциальными впускными каналами, можно настраивать определенное завихрение воздуха без вредных внутренних турбулентностей во время впрыскивания и сгорания. Так как М332 является самым маленьким с 240 диаметром поршня и таким образом самый мало затратный двигатель в семействе Круп МАК, в этом двигателе производились наибольшие испытания для модернизации формы камеры сгорания, распыла, сгорания тяжелых фракций нефти, а также наддува.

Планы реализации сгорания при постоянном давлении не должны опубликовываться здесь; едва ли они могут изменяться при последовавшем согласовании двигателя и оптимизации параметров двигателя на практике. Они не должны таким образом заботить производителя, так как пограничные области характеристик производства анализировались тщательно.

Собственно для этой цели разработали направления испытаний, как с механическим, так и с электронным регулированием оборудования впрыска, с электронным управлением впрыска высокого давления с предельным регулированием размеров коллектора, с переменными входами в турбину, с впускными и выпускными клапанами, с частично изолированными поршнями и частичные предельно охлажденной камеры сгорания, и провели испытания двигателя.

Дополнительно серии измерений с различными камерами сгорания, крышек цилиндров с переменным завихрением и большим числом форсунок, чтобы найти соответствующий оптимум и чтобы универсальный оптимум взаимодействии отдельного компонента для окончательного производства серии.

Так как двигатель М332 располагает длинным синхронным ходом поршня, провели исследования параметров высоты камеры сгорания и степени сжатия.

Определение оптимума формы камеры сгорания и степени сжатия, представляет издержки, однако, получена термодинамически выгодная работа. При этом важно то, что любое разбрызгивание топлива о крае поршня, при окончании впрыскивания исключаются. Испытания опять потвердили, что при движении поршня в области огненного торца от кольца полная защита обеспечена.


  1. Поршень


Поршень модифицировался в области камеры сгорания и поршневого кольца, однако состоит по-прежнему, в верхней части из стали и нижней части из алюминия. Головка поршня охлаждается интенсивно; специально c этой целью в двигателе есть подводы масла — начинающееся с распределительной магистрали через соединения в рамовых подшипниках, канавке во вкладыше подшипника, каналах и переходы до поршневого пальца — интенсивно циркулирует посредством более больших поперечных срезов. Эффект этого всего мероприятия выражается в расходе масляного насоса, количество которого при равном напоре на 30 % может повышаться.

Поршень получает закаленные кольцевые пазы. Несмотря на то, что после долговременного эксплуатации канавки колец могут срабатываться из-за хромирования, можно опять вернуть начальные размеры, компания имеет в этом, правильно выбранные размеры высоты перегородки кольца дают возможность использовать натяг.

В дальнейшем размеры подобраны для поршневых колец и перегородок кольца на стабильный характер давления для нового и изношенного состояния. Известно, что здесь лежит одна из самых существенных причин расхода масла, и что измерение характера давления за отдельным кольцом, являются необходимыми для технически правильного решения.



  1. Крышка цилиндров



Область камеры сгорания головки цилиндра или блока цилиндров модифицировалась и после c-познаний и переделывалась в модельно-техническую конструкцию. Конструкция предусматривает новую технологию на высокопрочном чугуне GGG60— в сочетании с правильно-литейную форму охлаждающей рубашки в области кольца седла клапанов, а также в области направляющих втулок клапана, для наименьшей тепловой деформации, чтобы получать наилучшую пригонку седла клапана при горячей и холодной обработке в производстве. Клапаны огородили от прямого подогрева с помощью охлаждения наверх в область низа крышки цилиндров; в результате этого метода, также на М453 C и М552 температурная усадка клапана при 40 град.. Уплотнительные кольца изготовленные из герметичного, однако, обуславливает изнашиваемость материала детали, которая гарантируем хорошую пригонку к клапану и лучший теплоотвод. Для хорошей теплостойкости клапана Крупп Мак заботится о поворотном механизме, которые обеспечивают положение клапана, безотказный ход.

C-план содержит в основном всестороннюю переработку для удобства технического обслуживания. Сюда относятся штекерные соединения и хорошо доступные легко разъемные замки. Удобство доступа к четырем винтам фланцев коллектора являлось бы улутшеннием конструкции, переделали изолирование дымохода. Впрочем, все винты, включая шатун и болты крепления головки блока цилиндров, монтируются простейшим способом механически; благодаря 8 болтам в крышке цилиндров можно избежать требующий много времени гидравлический способ . Все трубопроводы, которые мешают монтажу головки цилиндра или блока цилиндров, перенесены в имеющиеся в распоряжении свободные места.


  1. Блок цилиндров



Материал заготовки в области блока цилиндров двигателя М332 C поменялся с серого чугуна на высокопрочный чугун. Это мероприятие повышает износостойкость детали в трое по сравнению с серым чугуном и сокращает хрупкость в 10 раз по сравнению с серым чугуном. С помощью использования высокопрочного чугуна в области напряженных элементов увеличиваются существенно долговечность двигателя. Это приводит среди прочего также к лучшей перепродажной стоимости на устарелые судна. Блок цилиндров переконструирован для стабильных радиальных направляющих втулок области верхнего бурта при одновременно интенсивном охлаждении этой части.


  1. Коленчатый вал



Коленчатый вал является поковкой, из высококачественной улучшенной стали. Размеры переделывались в соответствии с новыми требованиями фирм, классификаций. Предохранение от высоких нагрузок на подшипник увеличили противовесы, мероприятия, которые гарантируют высокую надёжность подшипника. Улучшение балансировки сокращает дополнительно потери мощности в области фундамента.


  1. Шатун


Шатун вынимается; это оправдало себя в прошлом 100 %, эксплуатация проста и доступна. Для улучшения посадок подшипника и втулки поршня Круп МАК разрабатывал специальную структуру поверхности.


  1. Вкладыш подшипника


Для подшипников являются сегодня высоким уровнем техники оловянистое гальваническое покрытие. Благодаря этому исчезли проблемы коварных сопутствующих явлений коррозии. В дальнейшем отпала необходимость применение дополнительных и тяжелых противовесов работающих в коренных подшипниках и повысилась эксплуатационная надежность коленчатого вала в состояние с хорошими техническими резервами. Особый успех даёт в этой связи производственный опыт канавок подшипника, которые очевидно получает дополнительную несущую способность масляная пленка, лабиринтовые уплотнения препятствуют вытеснению смазочных масел из подшипника. Выводы замечательны.


  1. Втулка


Как уже упоминается в блоке цилиндров, опорная втулка ставится в верхнюю область бурта в блок цилиндров и интенсивно охлаждается жидкостью. Установка втулки в блок цилиндров изготовленного из высокопрочного чугуна намного проще, чем в серочугунный. С одной стороны более незначительны деформации высокопрочного чугуна с коэффициентом 1,6, так как Е-модуль от GGG50 гораздо выше, с другой высокопрочный чугун с высокой допускаемой нагрузкой, является лучшей упором для опорной втулки. Опорная втулка является закаленной, Круп МАК совершенствовал этот процесс десятилетия в направлении на более большие глубины проникновения.

Гомогенная закалка опорной втулки в область движения поршневого кольца от любых пульсации в последствии частичных закаливаний гарантирует долгосрочность расхода масла.


  1. Впрыскивание


К достижению сгорания при постоянном давлении необходимым характеристикам впрыскивания обрабатываются конфиденциально. Относительно необходимых максимальных мощностей и моментов важно сказать, что весь приводной механизм для клапанов и топливного насоса, включая кулачок и нагрузку качения до шестерни страхуют.

Шестерни этой дизельной серии закаливались и шлифовались с начала 70-х годов и с того времени не было ни одного повреждения шестерни.

Сегодня С-план Крупп Мак двигатели придерживаются всегда закаливания приводного шестерного механизма.


  1. Выпускной газоотвод


Двигатели конструктивного ряда М332 C нагружаются импульсным газотурбинным наддувом. В полной мере испытывался также здесь напор выпускного газоотвода, который оптимизируют, как известно при полной нагрузке. Однако благодаря равновысокому давлению в воздуховоде и выпускном трубопроводе очень реагирует на продувочный воздух и недопустимо сильно на повышенные сопротивления в выпускной системе, или на незначительные потери коэффициента полезного действия при неполной нагрузке. Даже незначительные загрязнения воздуха и газоотвода, радиатора надувочного воздуха, область турбин и компрессора, а также монтаж решетки входа турбины приводят к сильной потери давления наддува и вместе с тем к повышенной тепловой нагрузке.

Из испытаний в исследованиях Круп МАК с переменными системами газоотвода и переменными поверхностями турбины разработан 4-х отводящий эжектор. Этот 4-х отводящий эжектор приводит импульсы отработавшего газа в идеале на 8-м М332 таким образом, что никакие помехи от продувки соседних цилиндров не приводят к сбою. В своей оптимальной настройке 4-х отводящий эжектор даже для продуваемых цилиндров производит дополнительное понижение давления, который осуществляет недостижимо высокий и равномерный распыл в цилиндрах. Это преимущество отражается, прежде всего, в положительно фиксированной работе винта, так как высокий перепад давления между надувочным воздухом и выпускной трубопровод вызывает незаурядно большие пропускные способности продувочного воздуха. Интервал к линии помпажа компрессора остаётся, поэтому сохранение режима работы винта в нагнетании гарантировано.

У конструкции выпускного трубопровода выбрано устройство так, что никакие напряжения во фланцах газоотвода отработавшего газа не возникают. Компенсаторы хорошо доступные, газоотвод оформлен так, что как с одной стороны, так и с другой прилигают к турбоагрегату.

Изоляция газоотвода совершенно по новому сконструирована и связана местами крепления только с выпускным патрубком. В области крышки цилиндра необходимы только малые усилия, чтобы демонтировать отдельные части перехода к цилиндрам. Хорошее удобство доступа к винтам в крышке цилиндра особенно уделено внимание. Винты подогнаны относительно бокового зазора и материала для высокого режима температуры и горячего монтажа. Если демонтируется крышка цилиндров, то предназначенные подпорки заботятся об уверенном позиционировании выпускного трубопровода и соединительных фланцев.



  1. Наддув


Важной предпосылкой для эксплуатации тяжелых фракций нефти на судах является работа турбонагнетателя приспособленного к такому топливу. В этой связи работа радиальных компрессоров затруднена, так как конструкция турбины требует перемены направления потока, требуются центробежные силы вращающегося турбинного колеса. Если вытекающий отработавший газ, соблюдая это направление, то наличие всех твердых остаточных продуктов сгорания в моменте выхлопа приводит к отложению на лопатках турбины. Эти заброшенные частицы (их приносит потоком отработавших газов повторно к рабочему колесу) откладывают на внешнем кольце абразивные осадки которые приводят к износу и простоям. Изготовителя турбонагнетателя и производителя двигателя решают эту проблему каждый своим методом: изготовители турбонагнетателя применяют износостойкие насадки колец. Первые длительные испытания с износостойкими насадками на кольца свыше 4800 часов показывают незначительный износ. Круп МАК внес вклад, выполняя сокращения процента твердых остаточных продуктов сгорания в отработавшем газе С-дизелей с постоянным давлением сгорания.

Подгонка специфики турбоагрегата происходила при других c-двигателях для оптимального соотношения коэффициента полезного действия в рабочей области нагрузки с одновременно сильными «Büffelcharakteristik» при ходовых режимах винта. Большие пропускные способности продувочного воздуха способствовали верному решению, чтобы достичь наибольших границ режима . Даже кривые винта имеют на 130% дальше границы помпажа.


Резюмирование.


Двигатель М332C Круп МАК продолжает серию надёжных, малых машин на тяжелых фракциях нефти с сильными техническими характеристиками и вращающим моментом. Он использует данные из научного исследования и разработок впрыскивания, сгорания и наддува, и данные из практики сгорания тяжелых фракций нефти, эксплуатационной надежности и удобства технического обслуживания, а также величин расхода и простоев.

Так как двигатель располагает длинным ходом поршня, параметры могли сохранять степень сжатия, оптимизированную в камере сгорания для характеристики впрыскивания. Характер крутящего момента, благодаря модифицированному наддуву, ещё лучше, чем в обычном холостом режиме.

Незначительный процент твердых остаточных продуктов сгорания в отработавшем газе оседает на различных элементах конструкции, огневой бурт поршня, поршневые кольца и клапаны, в смазочных маслах и масляных фильтрах, турбонагнетателе и газоотводе, а также незначительно воздействует на людей, и на окружающую среду.

Особенное значение придается эксплуатационной надежности и надежному обслуживанию, выполняемое для покупателя. Сюда относятся каждое ёмкое мероприятие, которое технически застраховано, и имеет необходимый инструмент.

С достигнутыми хорошими величинами расхода на основе хорошего сгорания, оптимизировали область работы, которая остаётся постоянной в граничных областях износа.

Вместе с тем нахождение в рабочем диапазоне 1000 до 1600 kW и диапазоне частоты вращения 720 до 900 об/мин, делает его в 90-х замечательным 6-ти и 8-ти цилиндровым дизелем работающем на тяжелом топливе.

Das Wörterbuch


1

Der Diselmotor

Дизель

2

Der Brennstoff

Топливо

3

der breiten Fraktionzusammensetzung

Широко фракционный состав

4

Der Kolben

Поршень

5

Der Pleuelstange

Шатун

6

Der Kurbelwall

Коленчатый вал

7

Der Zylinderkopf

Крышка цилиндра

8

Die Kastengestell

Блок цилиндров

9

Der Lagerschalen

Вкладыш подшипника

10

Der Laufbuchse

Втулка

11

Der Abgasleitung

Выпускной газоотвод

12

Der Aufladung

Наддув

13

Die Ring

Кольцо

14

Die Anpassung

Приспособление

15

Das Grauguß

Серый чугун

16

Das Sphäroguß

Высокопрочный чугун

17

Die Zugänglichkeit

Доступность

18

Der Abstützungen

Опора

19

Die Wirtschaftlichkeit

Экономичность

20

Der Leistungsbereich

Рабочий диапазон

21

Die Anpassung

Подгонка

22

Der Gestellbereich

Область станины

23

Die Verminderung

Сокращение

24

Das Turbinenlaufrad

Турбинное колесо

25

Der Ansatz

Патрубок

26

Der Bundbereich

Область бурта

27

Das Ventile

Клапан

28

die Verwendung

Применение


29

Die Härtung

Закалка

30

Die Richtung

Направление

31

weiterentwiekelt

Глубина проникновения

32

Ölverbrauch

Расход масла

33

langfristig

Долгосрочность

34

sicheren

Гарантирует

35

Die Erzielung

Достижение

36

vertraulich

Конфидициально

37

bezüglich

Относительно

38

Das gesamte Antrieb

Приводной механизм

39

Die Kraftstoffpumpe

Топливный насос

40

Der Nocken

Кулачек

41

Die Rollenbelastung

Нагрузка качения

42

Das Zahnräd

Шестерня

43

Die Weise

Способ

44

Die Störwellen

Волновые помехи

45

spülenden

Продувание

46

Der Nachbarzylinder

Соседний цилиндр

47

Der Anfang

Начало

48

Die Stoβaufladung

Импульсный наддув

49

Der Vollast

Полная нагрузка

50

Die Optimalabstimmung

Оптимальная нагрузка

51

Der Uterdruck

Давление ниже атмосферного

52

Das Spülgefälle

Перепад продувки

53

Der Abstand

Интервал

54

Die Pumpgrenze

Ограничение насоса

55

Das Verdichter

Компенсация

56

Die Anordnung

Расположение

57

Die Verspannungen

Напряжение

58

Der Abgasflanschen

Фланец газоотвода

59

Die Voraussetzung

Предпосылка

60

Der Schwerölbetrieb

Работа на тяжелых фракциях нефти

61

Der Turboladerhersteller

Изготовитель турбонагнетателя

62

Die Düsenringen

Насадка кольца

63

Die Langzeiterprobungen

Длительные испытания

64

Der Verschleiβ

Износ

65

Die Gleichdruckverbrennung

Постоянное давление сгорания

66

Die Anpassung

Подгонка

67

Die Spülluftduchsätze

Пропускные способности наддува

68

robust

Надежный

69

Das Drehmoment

Крутящий момент

70

Die Entwicklung

Разработка

71

Die Forschung

Исследования

72

Das Kolbenhub

Ход поршня

73

Das Verbrennungsrückstände

Остаточные продукты сгорания

74

Die Schmierölfilter

Масляный фильтр

75

Die Umweltbelastung

Окружающая среда

76

Die Betriebssicherheit

Эксплуатационная надёжность

77

Der Lietungsbereich

Диапазон мощности

78

Der Drehzahlbereich

Диапазон частоты вращения

79

Die Entwicklungsgeschichte

История развития

80

Das Verbrennungsverfahrens

Способ горения

81

Der Auspuff

Выхлоп

82

Die Wirkuung

Эффект

83

Die Schraube

Винт

84

Die Zugänglichkeit

Удобный доступ

85

Die Reserven

Запасы

86

Die Annäherung

Приближение

87

Die Erregung

Возбуждение

88

Das Gegenteil

Противоположность

89

Die Schffahrt

Судоходство

90

Das Abblaseventil

Выпускной клапан

91

Das Umblaseventil

Впускной клапан

92

Der Drall

Завихрение

93

Die Meβriehe

Серия измерений

94

Die Abhängigkeit

Зависимость

95

Die Menge

Количество

96

Der Quersehnitt

Поперечное сечение

97

Der Kolbenbolzen

Поршневой палец

98

Die Formbeständigkeit

Теплостойкость

99

Die Kühlung

Охлаждение

100

Das Abgasrohre

Выхлопная труба



Литература


  1. Heintze, Zigan. Zwischenbericht 5/87/2 „Variabler Multipulse-Converter" (nicht veröffentlicht).

  2. Holst, Zigan. „C-Entwicklung und Vorerprobung 6 M 332 C" (nicht veröffentlicht).

  3. Zigan, Nagel. Zwischenbericht „Elektronisch gesteuerte Druckspeicher-Einspritzung" (nicht veröffentlich).

  4. Schlemmer-Kelling, Zigan. Versuchsbericht 37/ 89/282 „Verbesserung des Teillastverhaltens M 332/M 282" (nicht veröffentlicht).

  5. Van't Hoff, Zwingmann. Versuchsbericht 282/ 352 „Dichtverband Laufbuchse/Kastengestell" (nicht veröffentlicht).

  6. Van't Hoff, Zwingmann. Versuchsbericht 332/ 355 6 M 332 „Einspritzung und Rauchverhalten" (nicht veröffentlicht).

  7. Schlachta, Zwingmann. „Betriebscrfahrungen mit M 332-Motoren im Schwerölbetricb" (nicht veröffentlicht).

  8. Zigan. „Stauaufladung am Motor 8 M 282". DT 3 Bericht Nr. 4/87 (nicht veröffentlicht).

  9. Zeitschrift “Seewirtschaft” Jahngang 42 8/1990 August 92s.

  10. Zeitschrift “Seewirtschaft” Jahngang 43 3/1991 März 70s.











Нравится материал? Поддержи автора!

Ещё документы из категории языкознание, филология:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ