Экономическое моделирование в банковской сфере
Задание 1
В таблице приведены поквартальные данные о кредитах от коммерческого банка на жилищное строительство за 4 года (16 кварталов).
t
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Y (t)
43
54
64
41
45
58
71
43
49
62
74
45
54
66
79
48
Требуется:
1. Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, применив параметры сглаживания α1 = 0,3; α2 = 0,6; α3 = 0,3.
2. Оценить точность построенной модели с использованием средней ошибки аппроксимации;
3. Оценить адекватность построенной модели на основе исследования:
случайности остаточной компоненты по критерию пиков;
независимости уровней ряда остатков по d-критерию (в качестве критических использовать уровни d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом уровне значения r1 = 0,32;
нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.
4. Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.
5. Отобразить на графиках фактические, расчетные и прогнозные данные.
Решение:
1. Для оценки начальных значений а (0) и b (0) применим линейную модель к первым 8 значениям Y (t). Линейная модель имеет вид:
Метод наименьших квадратов дает возможность определить коэффициенты линейного уравнения по формулам:
Таблица 1
t
Y (t)
t-tср
(t-tср) 2
Y-Yср
(Y-Yср) х (t-tср)
1
43
-4
12
-9
33
2
54
-3
6
2
-4
3
64
-2
2
12
-17
4
41
-1
0
-11
6
5
45
1
0
-7
-4
6
58
2
2
6
8
7
71
3
6
19
47
8
43
4
12
-9
-33
36
419
0
42
0
36
Произведем расчет:
Получим линейное уравнение вида:
Для сопоставления фактических данных и рассчитанных по линейной модели значений составим таблицу.
Таблица 2. Сопоставление фактических и расчетных значений по линейной модели
t
Y (t)
Yp (t)
1
43
49,42
2
54
50,26
3
64
51,11
4
41
51,95
5
45
52,80
6
58
53,64
7
71
54,49
8
43
55,33
Коэффициент сезонности есть отношение фактического значения экономического показателя к значению, рассчитанному по линейной модели.
Поэтому в качестве оценки коэффициента сезонности I квартала F (-3) может служить отношение фактических и расчетных значений Y (t) I квартала первого года, равное , и такое же отношение для I квартала второго года (т.е. за V квартал t=5)
.
Для окончательной, более точной, оценки этого коэффициента сезонности можно использовать среднее арифметическое значение этих двух величин.
Аналогично находим оценки коэффициентов сезонности для II, III и IV кварталов:
Построим адаптивную мультипликативную модель Хольта-Уинтерса (табл. 3) используя следующие формулы:
Таблица 3. Модель Хольта-Уинтерса
t
Y (t)
a (t)
b (t)
F (t)
Yp (t)
Абс. погр.,
E (t)
Отн. погр.,
в%
0
48,57
0,85
0,8612
-
-
1
43
49,57
0,89
0,8650
42,56
0,44
1,03
2
54
50,35
0,86
1,0746
54,39
-0,39
0,72
3
64
50,88
0,76
1,2658
65,43
-1,43
2,24
4
41
51,85
0,82
0,7877
40,44
0,56
1,37
5
45
52,48
0,76
0,8605
45,56
-0,56
1,24
6
58
53,46
0,83
1,0807
57,21
0,79
1,36
7
71
54,83
0,99
1,2833
68,73
2,27
3, 20
8
43
55,45
0,88
0,7803
43,97
-0,97
2,26
9
49
56,52
0,94
0,8644
48,47
0,53
1,07
10
62
57,43
0,93
1,0801
62,09
-0,09
0,15
11
74
58,15
0,87
1,2769
74,89
-0,89
1, 20
12
45
58,61
0,74
0,7728
46,05
-1,05
2,34
13
54
60,29
1,03
0,8832
51,31
2,69
4,99
14
66
61,25
1,01
1,0785
66,23
-0,23
0,34
15
79
62,14
0,97
1,2735
79,50
-0,50
0,63
16
48
62,81
0,88
0,7676
48,77
-0,77
1,61
25,75
Проверка качества модели.
Для того чтобы модель была качественной уровни, остаточного ряда E (t) (разности между фактическими и расчетными значениями экономического показателя) должны удовлетворять определенным условиям (точности и адекватности). Для проверки выполнения этих условий составим таблицу 4.
Таблица 4. Промежуточные расчеты для оценки адекватности модели
t
E (t)
Точка поворота
E (t) 2
[E (t) - E (t-1)] 2
E (t) xE (t-1)
1
0,44
-
0, 194
-
-
2
-0,39
0
0,150
0,69
-0,17
3
-1,43
1
2,05
1,09
0,55
4
0,56
1
0,32
3,98
-0,81
5
-0,56
1
0,31
1,26
-0,32
6
0,79
0
0,62
1,81
-0,44
7
2,27
1
5,17
2,21
1,79
8
-0,97
1
0,95
10,54
-2,21
9
0,53
1
0,28
2,24
-0,51
10
-0,09
0
0,01
0,38
-0,05
11
-0,89
0
0,78
0,63
0,08
12
-1,05
1
1,11
0,03
0,93
13
2,69
1
7,26
14,03
-2,83
14
-0,23
0
0,05
8,52
-0,61
15
-0,50
0
0,25
0,07
0,11
16
-0,77
-
0,60
0,08
0,38
Сумма
0,41
8,00
20,09
47,57
-4,09
2. Проверка точности модели.
Будем считать, что условие точности выполнено, если относительная погрешность (абсолютное значение отклонения abs{E (t) }, поделенное на фактическое значение Y (t) и выраженное в процентах 100%* abs{E (t) }/ Y (t) в среднем не превышает 5%. Суммарное значение относительных погрешностей составляет 25,75. Средняя величина: 25,75/16=1,61%, значит, условие точности выполнено.
3. Проверка условия адекватности.
Для того чтобы модель была адекватна исследуемому процессу, ряд остатков E (t) должен обладать свойствами случайности, независимости последовательных уровней, нормальности распределения.
Проверка случайности уровней. Проверку случайности уровней остаточной компоненты (гр.2 табл.4) проводим на основе критерия поворотных точек. Для этого каждый уровень ряда Е сравниваем с двумя соседними. Если он больше (либо меньше) обоих соседних уровней, то точка считается поворотной и в гр.3 табл.4 для этой строки ставится 1, в противном случае в гр.3 ставится 0. В первой и в последней строке гр.3 табл.4 ставится прочерк или иной знак, так как у этого уровня нет двух соседних уровней.
Общее число поворотных точек в нашем примере равно р=8.
Рассчитаем значение :
Функция int означает, что от полученного значения берется только целая часть. При N = 16.
Так как количество поворотных точек р= 8 больше q=6, то условие случайности уровней ряда остатков выполнено.
Проверка независимости уровней ряда остатков (отсутствия автокорреляции). Проверку проводим двумя методами:
1) по d-критерию критерий Дарбина-Уотсона (критические уровни d1=1,10 и d2=1,37):
Так как полученное значение больше 2, то величину d уточним:
Условие выполнено (1,37<1,63<2), следовательно, уровни ряда Е (t) являются независимыми.
2) по первому коэффициенту автокорреляции r (1):
Если модуль рассчитанного значения первого коэффициента автокорреляции меньше критического значения < rтабл., то уровни ряда остатков независимы. Для нашей задачи критический уровень rтабл. = 0,32. Имеем:
=0,20 < rтабл. = 0,32 - значит уровни независимы.
Проверка соответствия ряда остатков нормальному распределению определяем по RS-критерию. Рассчитаем значение RS:
,
где - максимальное значение уровней ряда остатков
;
- минимальное значение уровней ряда остатков
;
S - среднее квадратическое отклонение.
Emax - Emin = 2,69 - (-1,43) = 4,13
Уровни ряда остатков подчиняются нормальному распределению т.к полученное значение RS (3,57) попадает в заданный интервал (3,00<3,57<4,21).
Таким образом, все условия адекватности и точности выполнены. Следовательно, можно говорить об удовлетворительном качестве модели и возможности проведения прогноза показателя Yp (t) на год.
4. Расчет прогнозных значений экономического показателя.
Составим прогноз на четыре квартала вперед (т.е. на 1 год, с t=17 по t=20). Максимальное значение t, для которого могут быть рассчитаны коэффициенты и
определяется количеством исходных данных и равно 16. Рассчитав значения
и
(см. табл.1.4) по формуле:
,
где k - период упреждения;
- расчетное значение экономического показателя для t-го периода;
- коэффициенты модели;
- значение коэффициента сезонности того периода, для которого рассчитывается экономический показатель;
- период сезонности.
Определим прогнозные значения экономического показателя Yp (t) для: t = 17, 18,19 и 20.
5. На нижеприведенном рисунке проводится сопоставление фактических и расчетных данных. Здесь же показаны прогнозные значения о кредитах на год вперед. Из рисунка видно, что расчетные данные хорошо согласуются с фактическими, что говорит об удовлетворительном качестве прогноза.
Рис.1. Сопоставление расчетных и фактических данных
Задание 2
Даны цены (открытия, максимальная, минимальная и закрытия) за 10 дней. Интервал сглаживания принять равным 5 дням.
Дни
Цены
макс.
мин.
закр.
1
858
785
804
2
849
781
849
3
870
801
806
4
805
755
760
5
785
742
763
6
795
755
795
7
812
781
800
8
854
791
853
9
875
819
820
10
820
745
756
Рассчитать: экспоненциальную скользящую среднюю; момент; скорость изменения цен; индекс относительной силы; % R,% К,% D;
Расчеты проводить для всех дней, для которых эти расчеты можно выполнить на основании имеющихся данных.
Решение:
Для расчета экспоненциальной скользящей средней воспользуемся формулой:
,
где k = 2/ (n + 1),
- цена закрытия t-го дня;
- значение EMA текущего дня t.
Момент рассчитывается как разница конечной цены текущего дня и цены n дней тому назад
:
где - цена закрытия t-го дня.
- значение МОМ текущего дня t.
Скорость изменения цен рассчитываем как отношение конечной цены текущего дня к цене n дней тому назад, выраженное в процентах:
,
где - цена закрытия t-го дня.
- значение ROC текущего дня t.
Таблица 1. Результаты расчетов экспоненциальной скользящей средней, момента, скорости изменения цен
Дни
Цены закр
ЕМАt
МОМt
ROCt
1
804
804,00
-
-
2
849
819,00
-
-
3
806
814,67
-
-
4
760
796,44
-
-
5
763
785,30
-
-
6
795
788,53
-9,0
98,88
7
800
792,35
-49,0
94,23
8
853
812,57
47,0
105,83
9
820
815,05
60,0
107,89
10
756
795,36
-7,0
99,08
Для расчета индекса относительной силы используем формулу:
,
где AU - сумма приростов конечных цен за n последних дней;
AD - сумма убыли конечных цен за n последних дней.
Таблица 2. Результаты расчета индекса относительной силы
Дни
Цены закрытия
Изменение (+/-)
RSI
1
804
45
-
2
849
-43
-
3
806
-46
-
4
760
3
-
5
763
32
-
6
795
5
47,3
7
800
53
31,0
8
853
-33
66,9
9
820
-64
73,8
10
756
45
48,1
Рассчитаем %R, %К, %D используя следующие формулы:
,
где - значение индекса текущего дня t;
- цена закрытия t-го дня;
L5 и Н5 - минимальная и максимальные цены за n предшествующих дней, включая текущие.
,
где - значение индекса текущего дня t;
- цена закрытия t-го дня;
L5 и Н5 - минимальная и максимальная цены за 5 предшествующих дней, включая текущие.
Индекс % D рассчитывается аналогично индексу %К, с той лишь разницей, что при его построении величины и
сглаживают, беря их трехдневную сумму.
Таблица 3. Результаты расчетов %R, %К, %D
Дни
Цены
% Kt
% Rt
%Dt
макс
мин
закр
1
858
785
804
-
-
2
849
781
849
-
-
-
3
870
801
806
-
-
-
4
805
755
760
-
-
-
5
785
742
763
16,41
83,59
-
6
795
755
795
41,41
58,59
-
7
812
781
800
45,31
54,69
34,38
8
854
791
853
99,11
0,89
60,33
9
875
819
820
58,65
41,35
66,22
10
820
745
756
8,46
91,54
53,33
Задание 3
3.1 Банк выдал ссуду, размером 5 000 000 руб. Дата выдачи ссуды 08.01.02, возврата 22.03.02. День выдачи и день возврата считать за 1 день. Проценты рассчитываются по простой процентной ставке 55% годовых. Найти:
3.1 1) точные проценты с точным числом дней ссуды;
3.1 2) обыкновенные проценты с точным числом дней ссуды;
3.1 3) обыкновенные проценты с приближенным числом дней ссуды.
Решение:
3.1 1) К = 365, t = 73, I = 5 000 000 х 0,55 х 73/365 = 550 000,00 руб.
3.1 2) К = 360, t = 73, I = 5 000 000 х 0,55 х 73/360 = 557 638,89 руб.
3.1 3) К = 360, t = 74, I = 5 000 000 х 0,55 х 74/360 = 565 277,78 руб.
3.2 Через 90 дней после подписания договора должник уплатил 5 000 000 руб.
Кредит выдан под 55% годовых (проценты обыкновенные).
Какова первоначальная сумма и дисконт?
Решение:
P = S / (1 + ni) = 5 000 000/ (1 + 0,55 х 90/360) = 4 395 604,40 руб.
D = S - P = 5 000 000 - 3 395 604,40 = 604 395,60 руб.
3.3 Через 90 предприятие должно получить по векселю 5 000 000 руб. Банк приобрел этот вексель с дисконтом. Банк учел вексель по учетной ставке 55% годовых (год равен 360 дням). Определить полученную предприятием сумму и дисконт.
Решение:
D = Snd = 5 000 000 x 0,55 х 90/360 = 687 500,00 руб.
P = S - D = 5 000 000 - 687 500,00= 4 312 500,00 руб.
3.4 В кредитном договоре на сумму 5 000 000 руб. и сроком на 5 лет, зафиксирована ставка сложных процентов, равная 55% годовых. Определить наращенную сумму.
Решение:
S = P x (1+i) n = 5 000 000 х (1+0,55) 5 = 44 733 048,44 руб.
3.5 Сумма размером 5 000 000 руб. представлена на 5 лет. Проценты сложные, ставка 55% годовых. Проценты начисляются 4 раза в году. Вычислить наращенную сумму.
Решение:
N = 5 x 4 = 20
S = P x (1+j / m) N = 5 000 000 х (1 + 0,55/4) 20 = 65 765 497,67 руб.
3.6. Вычислить эффективную ставку процентов, если банк начисляет проценты 4 раза в год, исходя из номинальной ставки 55% годовых.
Решение:
iэ = (1 + j / m) m - 1 = (1 + 0,55/4) 4 - 1 = 0,6742, т.е.67,42%.
3.7. Определить, какой должна быть номинальная ставка при начислении процентов 4 раза в году, чтобы обеспечить эффективную ставку 55% годовых.
Решение:
j = m x [ (1 + iэ) 1/m - 1] = 4 x [ (1 + 0,55) (1/4) - 1] = 0,46316, т.е.46,316%.
3.8. Через 5 лет предприятию будет выплачена сумма 5 000 000 руб. Определить ее современную стоимость при условии, что применяется сложная процентная ставка 55% годовых.
Решение:
руб.
3.9. Через 5 лет по векселю должна быть выплачена сумма 5 000 000 руб. Банк учел вексель по учетной ставке 55% годовых. Определить дисконт.
Решение:
P = S (1 - dсл) n = 5 000 000 x (1 - 0,55) 5 = 92 264,06 руб.
D = S - P = 5 000 000 - 92 264,06 = 4 907 735,94 руб.
3.10. В течение 5 лет на расчетный счет в конце каждого года поступает по 5 000 000 руб., на которые 4 раза в году начисляются проценты по сложной годовой ставке 55%. Определить сумму на расчетном счете к концу указанного срока.
Решение:
руб.

Нравится материал? Поддержи автора!
Ещё документы из категории экономика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ