Конспект урока геометрии на тему "Описанная окружность"

Описанная окружность.

Определение: Если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник – вписанным в окружность.



Теорема. Около любого треугольника можно описать окружность и притом только одну.

В отличие от треугольника около четырехугольника не всегда можно описать окружность. Например: ромб.

Теорема. В любом вписанном четырехугольнике сумма противоположных углов равна 1800.

Если сумма противоположных углов четырехугольника равна 1800, то около него можно описать окружность.

Для того чтобы четырехугольник АВСD был вписанным, необходимо и достаточно, выполнения любого из следующих условий:

  • ABCD выпуклый четырехугольник и ∟ABD=∟ACD;

  • Сумма двух противоположных углов четырехугольника равна 1800.

Центр окружности равноудален от каждой из его вершин и поэтому совпадает с точкой пересечения серединных перпендикуляров к сторонам многоугольника, а радиус равен расстоянию от центра до вершин.

Для треугольника: Для правильного многоугольника:

Вписанная окружность.

Определение: Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник – описанным около этой окружности.


Теорема. В любой треугольник можно вписать окружность и притом только одну.

Не во всякий четырехугольник можно вписать окружность. Например: прямоугольник, не являющийся квадратом.

Теорема. В любом описанном четырехугольнике суммы длин противоположных сторон равны.

Если суммы длин противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Для того чтобы выпуклый четырехугольник ABCD являлся описанным, необходимо и достаточно, чтобы выполнялось условие AB+DC=BC+AD (суммы длин противоположных сторон равны).

Центр окружности равноудален от сторон многоугольника, значит, совпадает с точкой пересечения биссектрис углов многоугольника (свойство биссектрисы угла). Радиус равен расстоянию от центра окружности до сторон многоугольника.

Для треугольника: Для правильного

многоугольника:

Нравится материал? Поддержи автора!

Ещё документы из категории геометрия:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ