Статистические методы обработки экспериментальных данных

Министерство образования Российской Федерации

Московский государственный университет печати

Факультет полиграфической технологии

Дисциплина: Математика

Курсовая работа по теме:

«Статистические методы обработки

Экспериментальных данных»

Выполнил: студент

Курс 2

Группа ЗТПМ

форма обучения заочная

Номер зачетной книжки Мз 023 н

Вариант № 13

Допущено к защите

Дата защиты

Результат защиты

Подпись преподавателя

Москва – 2010 год


0;3

3;6

6;9

9;12

12;15

15;18

18;21

4

6

9

11

14

18

13


21;24

24;27

27;30

30;33

11

7

4

3


  1. Построение интервального и точечного статистических распределений результатов наблюдений. Построение полигона и гистограммы относительных частот.



i – порядковый номер;

Ii – интервал разбиения;

xi – середина интервала Ii;

ni – частота (количество результатов наблюдений, принадлежащих данному интервалу Ii);

wi = - относительная частота (n =- объём выборки);

Hi = - плотность относительной частоты (h – шаг разбиения, т.е. длина интервала Ii).


i

Ii

xi

ni

wi

Hi

1

2

3

4

5

6

7

8

9

10

11

0;3

3;6

6;9

9;12

12;15

15;18

18;21

21;24

24;27

27;30

30;33

1,5

4,5

7,5

10,5

13,5

16,5

19,5

22,5

25,5

28,5

31,5

4

6

9

11

14

18

13

11

7

4

3

0,04

0,06

0,09

0,11

0,14

0,18

0,13

0,11

0,07

0,04

0,03

0,01

0,02

0,03

0,04

0,05

0,06

0,04

0,04

0,02

0,01

0,01

Объём выборки:

n ==100,

wi = ni/100;

контроль: =1

Длина интервала

разбиения (шаг):

h = 3 ,

Hi =


: 100 1,00

Статистическим распределением называется соответствие между результатами наблюдений (измерений) и их частотами и относительными частотами. Интервальное распределение – это наборы троек (Ii ; ni ; wi) для всех номеров i, а точечное – наборы троек (xi ; ni ; wi). Таким образом, в таблице имеются оба – и интервальное, и точечное - статистическое распределения.

Далее, строим полигон и гистограмму относительных частот.


Полигон.


Гистограмма.

Гистограмма относительных частот

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0

3











Интервалы частот

Плотность относительных частот


3


Полигон относительных частот – ломаная, отрезки которой последовательно (в порядке возрастания xi) соединяют точки (xi ; wi). Гистограмма относительных частот – фигура, которая строится следующим образом: на каждом интервале Ii, как на основании, строится прямоугольник, площадь которого равна относительной частоте wi; отсюда следует, что высота этого прямоугольника равна Hi = wi/h – плотности относительной частоты. Полигон и гистограмма являются формами графического изображения статистического распределения.


2. Нахождение точечных оценок математического ожидания и

дисперсии.



В качестве точечных оценок числовых характеристик изучаемой случайной величины используются:

  • для математического ожидания

= (выборочная средняя),

  • для дисперсии

s2 = (исправленная выборочная),

где n – объём выборки, ni – частота значения xi .

Таким образом, в статистических расчетах используют приближенные равенства

MX , DX s2 .


Нахождение точечных оценок математического ожидания и дисперсии по данным варианта осуществим с помощью расчетной таблицы.


i

xi

ni

xi ni

(xi - )2 ni

1

2

3

4

5

6

7

8

9

10

11

1,5

4.5

7,5

10,5

13,5

16,5

19,5

22,5

25,5

28,5

31,5

4

6

9

11

14

18

13

11

7

4

3

6

27

67,5

115,5

189

297

253,5

247,5

178,5

114

94,5

829,44

779,76

635,04

320,76

80,64

6,48

168,48

479,16

645,12

635,04

744,12

= =

хini/100 = 1590/100= 15,9

s2 = =

= 5324,04/99=53,78


: 100 1590 5324,04




3.Выдвижение гипотезы о распределении случайной величины.


При выдвижении гипотезы (предположения) о законе распределения изучаемой случайной величины мы опираемся лишь на внешний вид статистического распределения. Т.е. будем руководствоваться тем, что профиль графика плотности теоретического распределения должен соответствовать профилю гистограммы: если середины верхних сторон прямоугольников, образующих гистограмму, соединить плавной кривой, то эта линия представляет в первом приближении график плотности распределения вероятностей.

Итак, изобразим график и выпишем формулу плотности нормального (или гауссовского) распределения с параметрами а и , -   а  + ,




Сравнение построенной гистограммы и графика плотности распределения приводит к следующему заключению о предполагаемом (теоретическом) законе распределения в рассматриваемом варианте исходных данных:

Вариант 13 – нормальное (или гауссовское распределение)


4.Построение графика теоретической плотности распределения.



Чтобы выписать плотность теоретического (предполагаемого) распределения, нужно определить значения параметров и а и подставить их в соответствующую формулу. Все параметры тесно связаны с числовыми характеристиками случайной величины, т.е.

MX = а ,

DX = σ2

Поскольку значения математического ожидания и дисперсии неизвестны, то их заменяют соответствующими точечными оценками, т.е. используют (уже упомянутые ранее) приближенные равенства MX , DX s2 , что позволяет найти значения параметров распределения.

По исходным данным была выдвинута гипотеза о нормальном распределении изучаемой случайной величины. Найдем параметры этого распределения:

_

x = а, 15,9 = а, а=15,9

s2= σ2 53,78 = σ2 σ=7,33


Следовательно, плотность предполагаемого распределения задается формулой

F(x)= [1/(7,33*√2π)]*e[-(x-15,9)2 / 2*(7,33)2)]=0.054*e^(0,009/((x-15,9)^2))

Теперь необходимо вычислить значения f(xi) плотности f (x) при x=xi (в серединах интервалов) Для этого воспользуемся следующей схемой:





значения фунцкии



при u=ui находятся, например, с помощью таблицы, имеющейся в любом учебнике или задачнике по теории вероятностей и математической статистике.


=15,9; s = 7,33



xi

ui = xi- x / s

φ(ui)


1,5

4,5

7,5

10,5

13,5

16,5

19,5

22,5

25,5

28,5

31,5

-1,96

-1,56

-1.15

-0,74

-0.33

0.08

0.49

0,90

1.31

1,72

2.13

0,0584

0,1182

0,2059

0,3034

0,3778

0,3977

0,3538

0,2661

0,1691

0,0909

0,0413

0,008

0,016

0,028

0,041

0,052

0,054

0,048

0,036

0,023

0,012

0,006

Далее, на одном чертеже строим гистограмму и график теоретической плотности распределения: гистограмма была построена ранее, а для получения графика плотности наносим точки с координатами (xi ; f(xi)) и соединяем их плавной кривой.


5.Проверка гипотезы о распределении с помощью критерия согласия Пирсона.

Ранее была выдвинута гипотеза о законе распределения рассматриваемой случайной величины. Сопоставление статистического распределения (гистограмма) и предполагаемого теоретического (графика плотности) показывает наличие некоторых расхождений между ними. Поэтому возникает естественный вопрос: чем объясняются эти несовпадения? Ответить на него можно двояко:

  1. Указанные расхождения несущественны и вызваны ограниченным количеством наблюдений и случайными факторами – случайностью результата единичного наблюдения, способа группировки данных и т.п. В этом случае выдвинутая гипотеза о распределении считается правдоподобной и принимается как не противоречащая опытным данным.


  1. Указанные расхождения являются существенными (неслучайными) и связаны с тем, что действительное распределение случайной величины отличается от предполагаемого. В этом случае выдвинутая гипотеза о распределении отвергается как плохо согласующаяся данными наблюдений.


Для выбора первого или второго варианта ответа и служат так называемые критерии согласия. Словари толкуют слово критерий (от греч. kriterion – средство для суждения) как признак, на основании которого производится оценка, определение и классификация чего-либо.

Существуют различные критерии согласия: К. Пирсона, А.Н. Колмогорова, Н.В. Смирнова, В.И. Романовского и другие. Мы рассмотрим лишь один из них – критерий Пирсона, называемый также критерием 2 («хи - квадрат»). (К. Пирсон (1857 - 1936) – английский математик, биолог, философ – позитивист.)

Критерий Пирсона выгодно отличается от остальных, во – первых, применимостью к любым (дискретным, непрерывным) распределениям и, во – вторых, простотой вычислительного алгоритма.

Правило проверки статистических гипотез с помощью критерия Пирсона будет объяснено на примерах.



Группировка исходных данных.


Применяется критерий Пирсона к сгруппированным данным. Предположим, что произведено n независимых опытов, в каждом из которых изучаемая случайная величина приняла определенное значение. Предположим, что вся числовая ось разбита на несколько непересекающихся промежутков (интервалов и полуинтервалов). Обозначим через I количество результатов измерений (значений случайной величины), попавших в i-й промежуток. Очевидно, что I = n.

Отметим, что критерий 2 будет давать удовлетворительный для практических приложений результат, если:

  1. количество n опытов достаточно велико, по крайней мере n100;

  2. в каждом промежутке окажется не менее 5…10 результатов измерений, т.е. i 5 при любом i; если количество полученных значений в отдельных промежутках мало (меньше 5), то такие промежутки следует объединить с соседними, суммируя соответствующие частоты.

Пусть концами построенного разбиения являются точки zi , где z1z2  …  zi – 1 , т.е. само разбиение имеет вид

(-   z0; z1) ,  z1; z2) ,  z2; z3) , … ,  zi – 1; zi   ).

После объединения соответствующих промежутков (последних двух) и замены самой левой границы разбиения на - , а самой правой на +  (поскольку на промежутки должна разбиваться вся числовая ось, а не только диапазон полученных в результате опыта значений), мы приходим к следующим интервальным распределениям, пригодным для непосредственного применения критерия Пирсона:



zi –1; zi

- ; 6

6;9

9;12

12;15

15;18

18;21

i

10

9

11

14

18

13


21;24

24;27

27;30


30;+∞

11

7

4


3




    1. Вычисление теоретических частот.


Критерий Пирсона основан на сравнении эмпирических (опытных) частот с теоретическими. Эмпирические частоты I определяются по фактическим результатам наблюдений. Теоретические частоты, обозначаемые далее , находятся с помощью равенства

= n pi ,

где n – количество испытаний, а pi  zi –1 x zi - теоретическая вероятность попадания значений случайной величины в i-й промежуток (1  i  1).Теоретические вероятности вычисляются в условиях выдвинутой гипотезы о законе распределения изучаемой случайной величины.











Процедура отыскания теоретических вероятностей и частот показана в расчетной таблице: _

n = 100; а=x= 15,9; σ= s=7,33

i

Концы промежутков

Аргументы фунцкции Ф0

Значения функции Ф0

Pi= Ф0(ui)- Ф0(ui-1)

ν1=npi

zi -1

zi

Ui-1=

(zi-1-x)/s

Ui=

(zi-x)/s

Ф0(ui-1)

Ф0(ui)

1

2

3

4

5

6

7

8

9

10


-∞

6

9

12

15

18

21

24

27

30


6

9

12

15

18

21

24

27

30

+∞


-∞

-1,35

-0,94

-0,53

-0,12

0,29

0,70

1,11

1,51

1,92


-1,35

-0,94

-0,53

-0,12

0,29

0,70

1,11

1,51

1,92

+∞


-0,5000

-0,4115

-0,3264

-0,2019

-0,0478

0,1141

0,2580

0,3665

0,4345

0,4726


-0,4115

-0,3264

-0,2019

-0,0478

0,1141

0,2580

0,3665

0,4345

0,4726

0,5000


0,0885

0,0851

0,1245

0,1541

0,1619

0,1439

0,1085

0,0680

0,0381

0,0274


8,85

8,51

12,45

15,41

16,19

14,39

10,85

6,80

3,81

2,74


: 1,0000 100,00



    1. Статистика 2 и вычисление ее значения по опытным данным.


Для того чтобы принять или отвергнуть гипотезу о законе распределения изучаемой случайной величины, в каждом из критериев согласия рассматривается некоторая (специальным образом подбираемая) величина, характеризующая степень расхождения теоретического (предполагаемого) и статистического распределения.

В критерии Пирсона в качестве такой меры расхождения используется величина


,

называемая статистикой «хи - квадрат» или статистикой Пирсона (вообще, статистикой называют любую функцию от результатов наблюдений). Ясно, что всегда 2 , причем 2 = 0, тогда и только тогда, когда при каждом i , т.е. когда все соответствующие эмпирические и теоретические частоты совпадают. Во всех остальных случаях 2 ; при этом значение 2 тем больше, чем больше различаются эмпирические и теоретические частоты.


Прежде чем рассказать о применении статистики 2 к проверке гипотезы о закон е распределения , вычислим ее значение для данного варианта; это значение, найденное по данным наблюдений и в рамках выдвинутой гипотезы, будем обозначать через 2набл..







i

i

1

2

3

4

5

6

7

8

9

10


10

9

11

14

18

13

11

7

4

3


8,85

8,51

12,45

15,41

16,19

14,39

10,85

6,8

3,81

2,74


0,15

0,03

0,17

0,13

0,20

0,13

0,00

0,01

0,01

0,02


: 100 100 0,85


2набл. = 0,85



5.4. Распределение статистики 2.


Случайная величина имеет 2распределение с r степенями свободы (r = 1; 2; 3; …), если ее плотность имеет вид


где cr – которая положительная постоянная ( cr определяется из равенства ). Случайная величина, имеющая распределение 2 с r степенями свободы, будет обозначаться .

Для дальнейшего изложения важно лишь отметить, что, во – первых, распределение определяется одним параметром – числом r степеней свободы и, во – вторых, существуют таблицы, позволяющие произвольно найти вероятность попадания значений случайной величины в любой промежуток.

Вернемся теперь к статистике . Отметим, что она является случайной величиной, поскольку зависит от результатов наблюдений и, следовательно, в различных сериях опытов принимает различные, заранее не известные значения. Понятно, кроме того, закон распределения статистики зависит: 1) от действительного (но неизвестного нам) закона распределения случайной величины, измерения которой осуществляются (им определяются эмпирические частоты ) ; 2) от количества произведенных наблюдений (от числа n) и от способа разбиения числовой оси на промежутки (в частности, от числа i ); 3) от теоретического (выдвинутого в качестве гипотезы) закона распределения изучаемой случайной величины (им определяются теоретические вероятности pi и теоретические частоты = n pi )

Если выдвинутая гипотеза верна, то очевидно, закон распределения статистики зависти только от закона распределения изучаемой случайной величины, от числа n и от выбора промежутков разбиения. Но на самом же деле, в этом случае (благодаря мастерски подобранному Пирсоном выражению для ) справедливо куда более серьезное утверждение. А именно, при достаточно больших n закон распределения статистики практически не зависит от закона распределения изучаемой случайной величины и ни от количества n произведенных опытов: при распределение статистики стремится к - распределению с r степенями свободы. Эта теорема объясняет, почему статистика Пирсона обозначается через .

Если в качестве предполагаемого выбрано одно их трех основных непрерывных распределений (нормальное, показательное или равномерное), то r = i – 3, где i – количество промежутков, на которые разбита числовая ось (количество групп опытных данных). В общем случае

где - количество параметров предполагаемого (теоретического) распределения, которые заменены вычисленными по опытным данным оценками.

Т.е. в данном варианте после группировки исходных данных получаем количество промежутков разбиения i = 10, = 2, т.к. количество параметров предполагаемого (теоретического) распределения, которые заменены вычисленными по опытным данным оценками, = 2 – это а и для нормального распределения.

Следовательно

R=i-Nпар-1=10-2-1=7




    1. Правило проверки гипотезы о законе распределения случайной величины.


Ранее отмечалось (и этот факт очевиден), что статистика принимает только не отрицательные значения (всегда 2 ), причем в нуль она обращается в одном – единственном случае – при совпадении всех соответствующих эмпирических и теоретических частот (т.е. при для каждого i).

Если выдвинутая гипотеза о законе распределения изучаемой случайной величины соответствует действительности, то эмпирические и теоретические частоты должны быть примерно одинаковы, а значит, значения статистики будут группироваться около нуля. Если же выдвинутая гипотеза ложна, то эмпирические и соответствующие теоретические частоты будут существенно разниться, что приведет к достаточно большим отклонениям от нуля значений .

Поэтому хотелось бы найти тот рубеж – называемый критическим значением (или критической точкой) и обозначаемый через , который разбил бы всю область возможных значений статистики на два непересекающихся подмножества: область принятия гипотезы, характеризующаяся неравенством , и критическую область (или область отвержения гипотезы), определяемую неравенством .





Область принятия Критическая область

гипотезы




0

Как же найти критическое значение ?

Если выдвинутая гипотеза о законе распределения изучаемой случайной величины верна, то вероятность попадания значений статистики в критическую область должна быть мала, так что событие {} должно быть практически неосуществимым в единичном испытании. Эта вероятность, обозначим ее через :

называется уровнем значимости.

Чтобы определить критическое значение , поступим следующим образом. Зададим какое – либо малое значение уровня значимости (как правило = 0,05 или = 0,01) и найдем как уровень уравнения

с неизвестной x. Поскольку распределение статистики близко при к - распределению с r степенями свободы, то

и приближенное значение можно найти из уравнения

Геометрические соображения показывают, что последнее уравнение имеет единственное решение: его корень – это такое число x , при котором площадь под графиком функции (плотности- распределения) над участком равна. На практике решение последнего уравнения находят с помощью специальных таблиц, имеющихся в любом руководстве по математической статистике; эти таблицы позволяют по двум входным параметрам – уровню значимости и числу степеней свободы r определить критическое значение . (Находимое таким образом критическое значение зависит, конечно, от и r,что при необходимости отражают и в обозначениях: ).

Зададим уровень значимости как = 0,05 (условие курсовой работы) .

Подводя итоги, сформулируем правило проверки гипотезы о законе распределения случайной величины с помощью - критерия Пирсона:

  1. Проводят n независимых наблюдений случайной величины (принято считать, что должно быть n  100).


  1. Разбивают всю числовую ось на несколько (как правило, на 8…12) промежутков

так, чтобы количество измерений в каждом из них (называемое эмпирической

частотой ) оказалось не менее пяти (т.е.  5 при каждом i).


  1. Выдвигают (например, судя по профилю гистограммы) гипотезу о законе распределения изучаемой случайной величины и находят параметры этого закона (чаще всего, заменяя математическое ожидание и дисперсию их оценками).


  1. С помощью предполагаемого (теоретического) распределения находят теоретические вероятности pi и теоретические частоты = n pi попадания значений случайной величины в i-й промежуток.


  1. По эмпирическим и теоретическим частотам вычисляют значения статистики , обозначаемое через 2набл..


  1. Определяют число r степеней свободы.


  1. Используя заданное значение уровня значимости и найденное число степеней свободы r, по таблице находят (на пересечении строки, отвечающей r, и столбца, отвечающего ) критическое значение .

  2. Формулируя вывод, опираясь на основной принцип проверки статистических гипотез:

если наблюдаемое значение критерия принадлежит критической области, т.е. если , то гипотезу отвергают как плохо согласующуюся с результатами эксперимента;

если наблюдаемое значение критерия принадлежит области принятия гипотезы, т.е. , то гипотезу принимают как не противоречащую результатам эксперимента.


    1. Вывод о соответствии выдвинутой гипотезы и опытных данных в варианте.


Правило проверки выдвинутой гипотезы о законе распределения изучаемой случайной величины для данного варианта реализовано в таблице:


Название величины

Обозначение и числовое значение величины

Уровень значимости (задан в условии)

= 0,05

Количество промежутков разбиения

l =10

Число степеней свободы

r=7

Критическое значение (находится по таблице)

=

Наблюдаемое значение критерия

2набл. = 0,85


ВЫВОД

Гипотеза не принимается для данного 9 варианта, поскольку : 83,5 << 15,51

Замечания: 1. Заданное значение уровня значимости = 0,05 означает, что

,

т.е. вероятность события {} очень мала. Однако это событие, обладая ненулевой вероятностью, и тогда (при = 0,05 примерно в 5% случаев) будет отвергнута правильная гипотеза. Отвержение гипотезы, когда она верна, называется ошибкой первого рода. Таким образом, уровень значимости - это вероятность ошибки первого рода. Отметим, что ошибкой второго рода называется принятие гипотезы в случае, когда она неверна.

2. Иногда вместо уровня значимости задается надежность :

т.е. - это вероятность попадания значений статистики в область принятия гипотезы. Поскольку события

{} и

противоположны, то



Нравится материал? Поддержи автора!

Ещё документы из категории математика:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ