Оптимизация сетевой модели комплекса производственных работ
Оптимизация сетевой модели комплекса производственных работ
Оглавление
События (предки)
начало работ
готовность деталей
готовность документации
поступление дополнительного оборудования
готовность блоков
События (потомки)
готовность деталей
изготовление деталей (4/3)
готовность документации
подготовка документации (5/2)
поступление дополнительного оборудования
закупка дополнительного оборудования (10/5)
готовность блоков
сборка блоков (6/4)
составление инструкций (11/6)
готовность изделия
установка дополнительного оборудования (12/6)
компоновка изделия (9/6)
Работы
Нормальный вариант
Ускоренный вариант
Прирост затрат на одни сутки ускорения
Время (сутки)
Затраты (у.е.)
Время (сутки)
Затраты (у.е.)
изготовление деталей
4
100
3
120
20
закупка дополнительного оборудования
10
150
5
225
15
сборка блоков
6
50
4
100
25
подготовка документации
5
70
2
100
10
установка дополнительного оборудования
12
250
6
430
30
составление инструкций
11
260
6
435
35
компоновка изделия
9
180
6
300
40
ВСЕГО
1060
ВСЕГО
1710
В планировании работ по созданию новых сложных объектов возникает неопределенность, разрешение которой недоступно при традиционных методах планирования, например: установление продолжительности выполнения работ коллективами исполнителей, равномерное распределение ресурсов по видам работ, сокращение срока окончания всех работ при минимальном увеличении затрат и др. Организация планирования может быть существенно улучшена с помощью математических методов анализа и метода сетевого планирования и управления (СПУ).
Программа определяет совокупность взаимосвязанных операций, которые необходимо выполнить в определенном порядке, чтобы достигнуть поставленной в программе цели. Операции логически упорядочены в том смысле, что одни нельзя начать раньше, прежде чем будут завершены другие. Операция программы обычно рассматривается как работа, для выполнения которой требуется затраты времени и ресурсов. Как правило, совокупность операций не повторяется.
До появления сетевых методов календарное планирование программ (т.е. планирование во времени) осуществлялось в небольшом объеме. Наиболее известным средством такого планирования был ленточный (линейный) график Ганта, задававший сроки начала и окончания каждой операции на горизонтальной шкале времени.
Сетевое планирование и управление программами включает три основных этапа: структурное планирование, календарное планирование и оперативное управление. Сетевая модель отображает взаимосвязи между операциями и порядок их выполнения. Событие определяется как момент времени, когда завершаются одни операции и начинаются другие. Начальная и конечная точки любой операции описываются, таким образом, парой событий, которые называют обычно начальным и конечным событием. Каждая операция в сети представляется только одной дугой (стрелкой). Ни одна пара событий не должна определяться одинаковыми начальными и конечными событиями.
При реализации некоторых программ может ставиться цель не просто обеспечения равномерного использования ресурсов, а ограничения максимальной потребности в них определенным пределом. Чтобы снизить потребность в ресурсах, приходится увеличивать продолжительность некоторых критических операций.
Планирование, управление и оптимизация любой экономической деятельности связаны с рассмотрением разветвленной системы последовательных целенаправленных работ. Для моделирования данной системы используются методы сетевого планирования и управления.
Повышение качества организационного управления можно достичь за счет улучшения качества управляющих решений, координации, контроля, и также за счет создания более совершенных систем. Применение математического моделирования позволяет резко повышать качество управляющих решений. Сетевые модели в виде графов могут точно описывать многие реально существующие системы. Такие модели более понятны практикам, чем другие методы исследования операций
Сетевые методы позволяют решать задачи проектирования больших оросительных систем, вычислительных комплексов, транспортных систем, систем связи, практические задачи, связанные со складированием, распределением товаров, календарным планированием выполняемых работ (сетевые графики проекта), заменой оборудования, контролем издержек, перевозками, работой систем массового обслуживания, обеспечением ритмичности производственного процесса, управлением запасами.
Задачи работы:
- построение сетевого графика;
- анализ сетевого графика;
-оптимизация сетевого графика.
1. Построение сетевого графика
Сетевой график – это граф, вершины которого отображают состояния некоторого объекта (например, строительства), а дуги - работы, ведущиеся на этом объекте. Каждой дуге сопоставляется время, за которое осуществляется работа и/или число рабочих, которые осуществляют работу. Часто сетевой график строится так, что расположение вершин по горизонтали соответствует времени достижения состояния, соответствующего заданной вершине.
При построении сетевого графика необходимо следовать следующим правилам:
график должен иметь только одно начальное событие (исток) и только одно конечное событие (сток);
ни одно событие не может произойти до тех пор, пока не будут закончены все входящие в него работы;
ни одна работа, выходящая из какого-либо события, не может начаться до тех пор, пока не произойдет данное событие;
график должен быть упорядоченным.
Построение сетевого графика необходимо начинать с выявления исходных работ модели. Если согласно условию некоторая работа может выполняться, не ожидая окончания каких-либо других работ, то такая работа является исходной в сетевой модели и ее начальным событием является исходное событие. Если исходных работ несколько, то их стрелки выходят все из одного исходного события.
Если, согласно условию, после окончания некоторой работы не должны выполняться никакие другие работы, то такая работа является завершающей работой сетевой модели и ее конечным событием является завершающее событие. Если завершающих исходных работ несколько, то их стрелки заходят все в одно завершающее событие.
События (предки)
начало работ
(1)
готовность деталей
(2)
готовность документации
(5)
поступление дополнительного оборудования
(3)
готовность блоков
(4)
События (потомки)
готовность деталей (2)
изготовление деталей (4/3)
готовность документации (5)
подготовка документации (5/2)
поступление дополнительного оборудования (3)
закупка дополнительного оборудования (10/5)
готовность блоков (4)
сборка блоков (6/4)
составление инструкций (11/6)
готовность изделия (6)
установка дополнительного оборудования (12/6)
компоновка изделия (9/6)
Начальным событием – истоком I является «начало работ», а завершающим событием – стоком S – «готовность изделия». Поэтому нужно пронумеровать их соответственно числами 1 и 6.
Из таблицы видно, что из событие 1 (по горизонтали) выходят две работы-дуги, которые ведут к соответствующим событиям по вертикали. Их обозначим по порядку 2 и 3. Соответствующим событиям по горизонтали присвоим те же числа.
Из события 2 (по горизонтали) выходит работа-дуга, завершающейся в событии (по вертикали), которое нужно обозначить по порядку числом 4. То же событие по горизонтали обозначается тем же числом 4.
Из события 3 (по горизонтали) выходят две работы-дуги, завершающейся в событии (по вертикали), одно из них обозначено числом 6, а второе нужно обозначить по порядку числом 5. То же событие по горизонтали обозначается тем же числом 5. Все события оказались пронумерованы. Используя эту нумерацию, а также указанные веса дуг, построим график.
(6)(4)
(4)(3)
( (11)(6)
(5)(2) (9)(6)
(10)(5)
(12)(6)
6
4
5
3
2
1
Полученный график оказался неупорядоченным, т.к. предок 5 предшествует потомку 4 (5<4). Поэтому эти числа необходимо поменять, чтобы получить упорядоченный граф – сетевой график.
События (предки)
начало работ
(1)
готовность деталей
(2)
готовность документации
(4)
поступление дополнительного оборудования
(3)
готовность блоков
(5)
События (потомки)
готовность деталей (2)
изготовление деталей (4/3)
готовность документации (4)
подготовка документации (5/2)
поступление дополнительного оборудования (3)
закупка дополнительного оборудования (10/5)
готовность блоков (5)
сборка блоков (6/4)
составление инструкций (11/6)
готовность изделия (6)
установка дополнительного оборудования (12/6)
компоновка изделия (9/6)
Тогда получим окончательный сетевой график.
(6)(4)
(4)(3)
( (11)(6)
(5)(2) (9)(6)
(10)(5)
(12)(6)
6
5
4
3
2
1
График построен на основе данных о продолжительности работ, которые выполняются только после того как будут выполнены все предшествующие ей работы.
Используя полученную нумерацию событий в графике, изменим вторую таблицу исходных данных в задании. Она примет вид:
Работы
Нормальный вариант
Ускоренный вариант
Прирост затрат на одни сутки ускорения
Время (сутки)
Затраты (у.е.)
Время (сутки)
Затраты (у.е.)
1-2
4
100
3
120
20
1-3
10
150
5
225
15
2-5
6
50
4
100
25
3-4
5
70
2
100
10
3-6
12
250
6
430
30
4-5
11
260
6
435
35
5-6
9
180
6
300
40
ВСЕГО
1060
ВСЕГО
1710
Полный путь – это путь от исходного до завершающего события или любой путь от истока к стоку.
Критический путь - максимальный по продолжительности полный путь в сети называется критическим; работы, лежащие на этом пути, также называются критическими. Именно длительность критического пути определяет наименьшую общую продолжительность работ по проекту в целом.
Длительность выполнения всего проекта в целом может быть сокращена за счет сокращения длительности задач, лежащих на критическом пути. Соответственно, любая задержка выполнения задач критического пути повлечет увеличение длительности проекта. Концепция критического пути обеспечивает концентрацию внимания менеджера на критических работах. Однако основным достоинством метода критического пути является возможность манипулирования сроками выполнения задач, не лежащих на критическом пути.
Расчет полных путей:
При нормальном режиме
1) 1 – 2 – 5 - 6 => 4 + 6 + 9 = 19
2) 1 – 3 - 6 => 10 + 12 = 22
3) 1 – 3 – 4 – 5 - 6 => 10 + 5 + 11 + 9 = 35
При ускоренном режиме
1) 1 – 2 – 5 - 6 => 3 + 4 + 6 = 13
2) 1 – 3 - 6 => 5 + 6 = 11
3) 1 – 3 – 4 – 5 - 6 => 5 + 2 + 6 + 6 = 19
Таким образом, критические пути при нормальном режиме число 35, при ускоренном число 19.
Полные пути
Продолжительность (сутки)
Нормальный режим
Ускоренный режим
1-2-5-6
19
13
1-3-6
22
11
1-3-4-5-6
35
19
3. Оптимизация сетевого графика
После расчета сетевого графика любым из указанных способов его анализируют с целью установления соответствия полученных сроков продолжительности строительства нормативным или директивным срокам. Корректировку сетевого графика называют оптимизацией графика.
Корректировка графика по продолжительности преследует цель сократить критический путь. Сокращения продолжительности критического пути в результате использования резервов времени, выявленных на некритических работах благодаря привлечению дополнительных ресурсов.
Оптимизация сетевого графика может осуществляться по следующим критериям:
минимизация времени выполнения комплекса работ при заданных за-
тратах на это выполнение;
минимизация затрат на выполнение комплекса работ при заданном
времени этого выполнения.
Целью оптимизации по критерию является сокращение времени выполнения проекта в целом. Эта оптимизация имеет смысл только в том случае, когда длительность выполнения работ может быть уменьшена за счет дополнительных ресурсов, что влечет к повышению затрат на выполнение работ. Для оценки величины дополнительных затрат, связанных с ускорением выполнения той или иной работы, используются либо нормативы, либо данные о выполнении аналогичных работ в прошлом.
Исходными данными для проведения оптимизации являются:
нормальная длительность работы;
ускоренная длительность;
затраты на выполнение работы в нормальный срок;
затраты на выполнение работы в ускоренный срок.
Сделаем оптимизацию по критерию минимизации затрат сетевого графика при заданной продолжительности выполнения всего комплекса работ за 21 сутки. Оптимизацию можно провести двумя способами.
Первый способ заключается в уменьшении продолжительности выполнения работ, осуществляемых в нормальном режиме, начиная с тех, которые дают наименьший прирост затрат.
Второй способ заключается в увеличении продолжительности выполнения работ, осуществляемых в ускоренном режиме, начиная с тех, которые дают наибольший прирост затрат.
Представим алгоритм решения поставленной оптимизационной задачи первым способом (нормальный вариант выполнения комплекса работ) в таблице:
№
шага
Суточный прирост затрат
Работа
Количество сокращаемых суток
Продолжительность
полного пути
Общий
прирост
затрат
1-2-5-6
1-3-6
1-3-4-5-6
0
-
-
-
19
22
35
-
1
10
3-4
(3) 3
-
-
32
30
2
15
1-3
(5) 5
-
17
27
75
3
20
1-2
(1) -
-
-
-
-
4
25
2-5
(2) -
-
-
-
-
5
30
3-6
(6) -
-
-
-
-
6
35
4-5
(5) 5
-
-
22
175
7
40
5-6
(3) 1
18
-
21
40
В С Е Г О
320
На первом шаге рассматривается работа 3-4, которая входит в третий полный путь и ее продолжительность может быть сокращена на все 3 суток, т.к. продолжительность третьего полного пути, а следовательно и всего комплекса работ, все равно будет выше требуемой.
Такое снижение продолжительности рассматриваемой работы на 3 суток приведет к увеличению затрат на выполнение этой работы, а следовательно, и всего комплекса работ в размере: 3·10=30 у.е.
Аналогично рассматривается возможность снижения продолжительности работы 1-3 на втором шаге:
По тем же причинам снижается продолжительность этой работы на максимально возможную величину, но уже в двух полных путях, куда она входит. Так же считаются и дополнительные затраты.
Работа 1-2, соответствующая третьему шагу действия на третьем шаге являются излишними и приводят только к неоправданному увеличению стоимости выполнения всего комплекса работ, т.е. к неоптимальному решению, поэтому этот шаг нужно пропустить. И по той же причине пропустим шаг четвертый соответствующей работе 2-5, которая входит в первый полный путь.
Работа 3-6, соответствующая пятому шагу, входит только во второй полный путь, продолжительность которого уже не превышает требуемой, поэтому снижение ее продолжительности не производится и затраты не увеличиваются.
Работа 4-5, соответствующая шестому шагу, входит только в третий полный путь, и ее продолжительность может быть сокращена на все 5 суток. Так же считаются и дополнительные затраты.
На седьмом шаге уменьшение продолжительности работы 5-6, входящей в первый и третий полный путь, определяется продолжительностью более критичного третьего полного пути, соответствующей продолжительности всего комплекса работ. Поэтому эта продолжительность уменьшается на 1 сутки и тем самым достигается заданная продолжительность всего комплекса работ. Затраты на это тоже пропорциональны 1 суткам.
Подсчитав суммарные дополнительные затраты на произведенное сокращение продолжительностей работ (320 у.е.) и зная первоначальную стоимость (1060 у.е.) всего комплекса работ в рассматриваемом нормальном варианте его выполнения, получим, что при снижении продолжительности выполнения всего комплекса работ с 35 суток до 21 суток оптимальные затраты составят 1060+320=1380 (у.е.).
Представим алгоритм решения поставленной оптимизационной задачи вторым способом в таблице:
№
шага
Суточный прирост затрат
Работа
Количество наращиваемых суток
Продолжительность
полного пути
Общее
снижение
затрат
1-2-5-6
1-3-6
1-3-4-5-6
0
-
-
-
13
11
19
-
1
40
5-6
(3) 2
15
-
21
- 80
2
35
4-5
(5) -
-
-
-
-
3
30
3-6
(6) 6
-
17
-
-180
4
25
2-5
(2) 2
17
-
-
- 50
5
20
1-2
(1) 1
18
-
-
- 20
6
15
1-3
(5) -
-
-
-
-
7
10
3-4
(3) -
-
-
-
-
В С Е Г О
-330
На первом шаге продолжительность работы 5-6 может быть увеличена только на 2 суток, т.к. при этом продолжительность третьего полного пути станет как требуемая в задании.
Тогда затраты на эту работу, с более поздним сроком выполнения, снизятся на 2·40=80 (у.е.), т.е. -80 у.е.
Второй шаг придется не использовать, т.к. увеличение продолжительности соответствующей ему работы 4-5 приведет к недопустимому увеличению продолжительности третьего полного пути, а следовательно, и всего комплекса работ.
Рассматривая работу 3-6 на третьем шаге, приходим к выводу, что ее продолжительность можно увеличить на максимально возможную величину 6 суток, т.к. он входит во второй полный путь.
Четвертый шаг соответствует работе 2-5, которая входит в первый полный путь, ее продолжительность можно увеличить на максимально возможную величину 2 суток.
Рассматривая работу 1-2 на пятом шаге, которая входит в первый полный путь, увеличиваем на максимально возможную величину 1 сутки и получить снижение затрат.
На последний шестой и седьмой шаг пропускаем, т.к. увеличение продолжительности соответствующих им работ приведет к недопустимому увеличению продолжительности всех трех полных путей, а, следовательно, и всего комплекса работ.
Подсчитав суммарное снижение затрат из-за произведенного увеличения продолжительностей работ (-330 у.е.) и зная первоначальную стоимость (1710 у.е.) всего комплекса работ в рассматриваемом ускоренном варианте его выполнения, получим, что при увеличении продолжительности выполнения всего комплекса работ с 19 суток до 21 суток оптимальные затраты составят 1710-330=1380 (у.е.).
Итоговые результаты, полученные обоими способами оптимизации, должны совпадать. Проверим это:
1) продолжительности соответствующих полных путей после оптимизации совпадают – 18,17,21;
2) стоимости выполнения всего комплекса работ после оптимизации совпадают – 1380.
В данной курсовой работе был построен сетевой график, проведен его анализ, и произведена оптимизация сетевого графика. Обоснованы рациональные методики поиска путей сетевого графика. Рациональность данных методик заключается в том, что они позволяют найти критический путь сетевого графика.
Осуществили решение двух основных задач сетевого планирования: задачу анализа оптимальности уже готового сетевого графика и задачу его оптимизации по длительности.
Значимость проделанной работы заключается в том, что применение предложенных методик, во-первых – позволяет точно судить об оптимальности сетевых графиков любой сложности, а во-вторых – сокращает затраты на сетевое планирование в целом, прежде всего, за счёт сокращения длительности разработки оптимальных сетевых графиков.
Анализ сетевого графика заключается в том, чтобы выявить резервы времени работ, не лежащих на критическом пути, и направить их на работы, лимитирующие срок завершения комплекса работ. Результатом этого является сокращение продолжительности критического пути.
Решение экономических задач с помощью метода математического
моделирования позволяет осуществлять эффективное управление как отдельными производственными процессами на уровне прогнозирования и планирования экономических ситуаций и принятия на основе этого управленческих решений, так и всей экономикой в целом.
При практическом использовании сетевого графика для руководства работами его можно совмещать с календарем.
Абланская Л.В., Бабешко Л.О., Баусов Л.И. Экономико-математическое моделирование: М.: Экзамен, 2006г. – 800с.
Баев И.А., Ширяев В.И., Ширяев Е.В Экономико-математическое моделирование управления фирмой: М.: КомКнига, 2005г. – 224с.
Дрогобыцкого И.Н Экономико-математическое моделирование: М.: Экзамен, 2004г. – 323с.
Конюховский П. В Математические методы исследования операций в экономике: С-Петербург: Питер 2003г. - 208 с.
Кундышева Е.С Экономико-математическое моделирование: М.: Дашков и К, 2006г. – 424с.
Миненко С.Н. Экономико-математическое моделирование производственных систем: М.: ИНФРА-М, 2004г. – 140с.
Светуньков С.Г., Светуньков И.С. Производственные функции комплексных переменных: Экономико-математическое моделирование производственной динамики: М.: Экзамен, 2004г. – 136с.
Нравится материал? Поддержи автора!
Ещё документы из категории экономико-математическое моделирование:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ