Конспект урока биологии для 9 класса «Основные закономерности существования живого»
Самоанализ урока
«Основные закономерности существования живого»
Место урока в теме. Урок находится в начале изучения темы «Изучение о клетке», поэтому по дидактическим целям его можно классифицировать как вводный.
Вид урока определен как урок – лекция. Вид лекции – лекция - информация
При постановке задач для учителя я ориентировалась на основные принципы развивающего обучения, основную цель биологического образования – создание условий для становления научного мировоззрения учащихся. Кроме того, большое внимание уделялось основной развивающей задаче – развитие системности мышления учащихся при изучении данной темы.
При выборе вида лекции и методов проведения урока наиболее целесообразной показалась лекция – информация, которая ориентирована на изложение и объяснение старшеклассникам научной информации, подлежащей осмыслению и запоминанию.
Кроме того, материал по теме был дан по принципу опережения, с целью осуществления системы контроля на последующих уроках и дальнейших темах, что содействует становлению системного мышления.
Лекция рассчитана на 2 часа учебного времени и включает следующие приемы: рассказ, эвристическая беседа, демонстрация наглядного материала, материалов презентации, таблиц, схем.
Особое место в организации урока занимает инструктивная карта для учащихся, которая выдается каждому из них. В карте отражен основной теоретический материал лекции, а также представлены незаконченные схемы, таблицы, определения, которые учащиеся заполняют в процессе прослушивания учителя, а также отвечают на вопросы с помощью этого текста, следят за текстом, выполняя работу с терминологическим аппаратом.
Такой прием использования дидактической карточки применен в связи с тем, что материал темы объемен, будет использован в течение всего учебного года при осуществлении системы контроля. Кроме того, логика т объем материала лекции отличается от таковых в школьном учебнике, по причине акцентирования внимания автора урока на развитие системного мышления школьников на уроке, при изучении темы «Клетка» в курсе «Общей биологии».
Тема урока: «Основные закономерности существования живого»
Тип урока: вводный
Вид урока: лекция - информация
Задачи:
Образовательная – продолжить формирование представления о клетке как элементарной единице живого и об организации живой системы на разных уровнях становления. Углубить знания об органоидах клетки, ввести понятия об их строении и функциях.
Развивающая – развивать умения синтезировать новые знания о закономерностях существования через анализ нового материала об особенностях строения и жизнедеятельности клетки, развивать системность мышления на основе сочетания системы повторения и опережающей подачи материала о клетке (затрагивается материал в эволюционном аспекте на молекулярном и клеточном уровне).
Воспитательная – мотивация к изучению темы «Клетка» с использованием интегративных знаний.
Методы: по источнику знаний – словесные, наглядные; по этапам обучения – подготовка к изучению нового материала, изучение нового материала; по логике обучение – индуктивные, дедуктивные; по характеру познавательной деятельности – объяснительно-иллюстративный.
Оборудование: ноутбук, проектор, экран, дидактический материал (схемы, рисунки), демонстрационные таблицы: «Строение клетки», «Химический состав клетки», инструктивные карты для заполнения на уроке, печатный вариант материалов лекции.
Ход урока:
Содержание темы
Деятельность учителя, учащихся
План лекции:
Определение понятия «жизни»
Основные параметры, характеризующие живое
Уровни организации жизни
Клетка – как элементарная единица живого, ее целостность и
дискретность
Постановка целей для учащихся
ЛЕКЦИЯ №1
I. Изучение нового материала
1. Жизнь – это ….?
Определение жизни, из ключевых определений понятия, дать принципиальное отличие или характеристику живой системы
ЖИЗНЬ - одна из форм существования материи, закономерно возникающая при определенных условиях в процессе ее развития. Организмы отличаются от неживых объектов обменом веществ, раздражимостью, способностью к размножению, росту, развитию, активной регуляции своего состава и функций, к различным формам движения, приспособляемостью к среде и т. п. Ученые полагают, что жизнь возникла путем абиогенеза.
Энгельс Ф.
Жизнь есть способ существования белковых тел, и этот способ существования заключается по своему существу в постоянном обновлении их химических составных частей путем питания и выделения.
Опарин А. И., академик
Жизнь это особая, качественно отличная от неорганического мира форма движения материи, и организмам присущи особые, специфически биологические свойства и закономерности, не сводимые только к законам, царящим в неорганической природе.
Волъкенштейн М.В., академик
Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из полимеров - белков и нуклеиновых кислот.
Энгельгардт В.А., 1976
Жизнь - это, прежде всего, система систем, в которой отчетливо выражено не параллельное, а последовательное сочетание. Тем самым создается предпосылка для организации этой последовательности по принципу иерархической соподчиненности.
Академик Н.П.Дубинин
Жизнь - это непрерывный в пространстве и времени поток, в котором преобразуются вещество, энергия и информация.
Биологические системы – биологические объекты различной сложности, состоящие из взаимосвязанных и взаимодействующих элементов.
Примерами биологических систем являются: клетка, ткань, органы и системы органов, организм, популяция, биоценоз, биосфера. Биологические системы обладают рядом общих свойств, таких как открытость, саморегуляция, самовоспроизведение. Открытость системы предполагает ее способность к обмену веществ, энергией и информацией, как между элементами системы, так и с окружающей средой. Саморегуляция и самоорганизация выражаются в способности системы поддерживать постоянство своего внутреннего состава, структуры, способностей взаимодействия между элементами системы.
Все живые организмы обладают общими универсальными
свойствами
Учитель.
Разбор определения – жизнь с точки зрения ученых
Ученик:
Из предложенных
определений выбирает ключевые слова,
характеризующие – жизнь
Беседа
Учитель:
Продуктивный вопрос.
Что или кого можно отнести к жизни, если это живое, то какими параметрами можно его характеризовать.
Все ли живые
организмы обладают общими
универсальными свойствами? Что и
кого можно отнести к
универсальности
Ученик:
Дает четкие
параметры,
характеризующие универсальность
2. Основные параметры живого
Схеме 1
Единство частей Свойства живых организмов
обмен веществ, поток энергии
Биологическая
система
раздражимость
гомеостаз
наследственность
размножение (репродукция)
развитие (рост)
движение
и целого
3. Уровни, характеризующие живое
Таблица 1
Название уровня
Компоненты, составляющие уровень
популяционно - видовой
Совокупность организмов одного и того же
вида, объединенных общим местом
обитания, в котором формируются популяции
организменный
Отдельная особь определенного вида, способная к развитию как живая система – от момента зарождения до прекращения существования
клеточный
Отдельная клетка
молекулярный
Молекулы веществ – органических и
неорганических, которые входят в состав и клеток, и организмов
Учитель:
Элементы беседа
Дает параметры, характеризующие
живые организмы
В процессе беседы - работа со
схемой 1 в инструктивной карте
Элементы беседы.
Демонстрация таблицы.
Учитель:
Дает характеристику уровней, дает основной уклон на то, что во всех уровнях происходят процессы,
которые взаимосвязаны.
Начиная с молекулярного
Ученик: Приводит свои примеры характеризующие каждый уровень
(краеведческий материал, ранее изученный
материал)
4. Клетка – это элементарная живая система, основа строения и жизнедеятельности организмов животных и растений. Клетки существуют как самостоятельные организмы (например, простейшие, бактерии), клетки тела (соматические), служащие для размножения, различные по строению и функциям (например, нервные, костные, мышечные, секреторные), имеются половые клетки.
Размеры клетки варьируют в пределах от 0,1-0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).
Рис 1 Животная клетка
Клетка – целостная структура, которая имеет сложное строение. Имеет основные части такие как ядро, цитоплазме, и мембрана. А также органоиды, которые выполняют определенные функции для поддержания жизни – жила клетка
КЛЕТКА – наилучший живой объект на котором хорошо представлены системы характеризующие живое с его целостностью и дискретностью
4.1. Клетка как единое целое состоит из основных частей
СТРОЕНИЕ КЛЕТКИ
мембрана цитоплазма Ядро
Структура Функция
СТРУКТУРА — строение
расположение, порядок, совокупность устойчивых связей объекта, обеспечивающих его целостность
ФУНКЦИЯ— исполнение, осуществление,
деятельность, работа
ядро структура
ядрышко
Клетка свойства
закодирована рРНК
функции
Демонстрация, рассказ
Учитель:
Разбор клетки,
используя рисунки учебника стр. 126, рис. 67, изображения «3» и схемы «1» на экране диапроектора
Самостоятельная работа
Ученик:
Рассматривая строение клетки,
сравнивает растительную и
животную клетку.
Делают вывод в инструктивной карте
Учитель:
Предлагает учащимся выделить главные компоненты клетки, заострив внимание на структуре и функциях ядра
Ученик:
Дает определение структуре,
свойствам и функциям на примере ядра
Характеристика каждой части структуры (клетки)
Таблица 2
Название органа
Особенности строения, функции
НАРУЖНАЯ
ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА
Отграничивает содержимое цитоплазмы от внешней среды; через поры внутрь клетки с помощью ферментов могут проникать ионы и мелкие молекулы; обеспечивает связь между клетками в тканях; принимает сигналы, имеет рецепторы.
Растительная клетка кроме цитоплазматической имеет толстую, состоящую из целлюлозы, мембрану — клеточную стенку, которой нет у животных клеток
ЦИТОПЛАЗМАТИЧЕСКИЙ МАТРИКС
Жидкая среда цитоплазмы, в которой взвешены органоиды и включения, состоит из жидкой коллоидной системы, в которой присутствуют молекулы различных веществ
ПЛАСТИДЫ
(ЛЕЙКОПЛАСТЫ, ХРОМОПЛАСТЫ,
ХЛОРОПЛАСТЫ)
Характерны только для растительных клеток, двумембранные органоиды. Зеленые пластиды — хлоропласты, содержащие хлорофилл в особых образованиях — тилакоидах (гранах), в которых осуществляется фотосинтез, способны к самовозобновлению
ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ
Расположена вокруг ядра, образована мембранами, разветвленная сеть полостей и каналов: гладкая ЭПС участвует в углеродном и жировом обмене; шероховатая обеспечивает синтез белков с помощью рибосом
ЯДРО
Содержит ДНК, т.е. гены, выполняет функции хранения и воспроизведения генетической информации; регуляции
процессов обмена веществ, протекающих в клетке. Окружено оболочкой из двух мембран, содержит хроматин, ядерный сок и ядрышко
ЛИЗОСОМЫ
Овальные тельца, окружены трехслойной мембраной,
содержат около 30 различных ферментов, способных
расщеплять органические и другие вещества;
образуются из структур комплекса Гольджи либо из ЭПС
КЛЕТОЧНЫЙ ЦЕНТР
Самовоспроизводящийся органоид клетки, состоит из очень маленьких телец (центриолей), расположенных под прямым углом друг к другу
КОМПЛЕКС ГОЛЬДЖИ
Состоит из пакетов уплощенных цистерн с трубочками,
отделяющими маленькие пузырьки — неактивные лизосомы,
формирует секреты
ЯДРЫШКО
Плотное округлое тельце, не является самостоятельной
структурой ядра, образуется вокруг участка хромосомы, где закодирована рРНК; в нем формируются субъединицы
рибосом
МИТОХОНДРИИ
Двумембранное строение, внутренняя мембрана имеет
выросты — кристы, на которых много ферментов,
обеспечивающих кислородный этап энергетического обмена
ВАКУОЛИ
Обязательные органоиды растительной клетки; содержат в растворенном виде многие органические вещества,
минеральные соли; имеются в животных клетка
РИБОСОМЫ
Сферические частицы, состоящие из двух субъединиц, располагаются в цитоплазме свободно или прикреплены к
мембранам ЭПС; осуществляют синтез белка
ЦИТОСКЕЛЕТ
Система микротрубочек и пучков белковых волокон, тесно связанных с наружной мембраной и ядерной оболочкой
ЖГУТИКИ И РЕСНИЧКИ
Органоиды движения, имеют общий план строения.
Движение жгутиков и ресничек обусловлено скольжением микротрубочек каждой пары друг относительно друга
Учитель:
Дальнейшее продолжение
повторения подробного разбора всех органоидов клетки
Работа с инструктивной картой
Ученик:
В процессе лекции заполняет таблицу №2
ЛЕКЦИЯ №2
(продолжение темы «Основные закономерности существования живого»)
3. Подробный разбор строения и значения ядра
Главный тезис лекции ЯДРО КАК СИСТЕМА И ПОДСИСТЕМА КЛЕТКИ. Целостность и дискретность любой системы, взаимосвязь дискретных единиц между собой для выполнения функции целого.
ЯДРО (клеточное ядро) — обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Размеры от 1 мкм (у некоторых простейших) до 1 мм
(в яйцах некоторых рыб и земноводных). Все организмы нашей биосферы как одноклеточные, так и многоклеточные, подразделяются на эукариот— их клетки содержат ядро, и прокариот, клетки которых не имеют морфологически оформленного ядра. Термин «ядро» (лат. nucleus) впервые применил Р. Броун в 1833 году, когда описывал шарообразные структуры, наблюдаемые им в клетках растений.
Ядерная оболочка
Внутреннее пространство клеточного ядра отделено от цитоплазмы ядерной оболочкой, состоящей из двух мембран. Мембраны оболочки ядра сходны по строению с другими мембранными компонентами клетки и построены по тому же принципу: это тонкие липопротеидные пленки, состоящие из двойного слоя липидных молекул, в который встроены молекулы белков. Пространство между внутренней и внешней ядерными мембранами называется перинуклеарным. На поверхности внешней ядерной мембраны обычно располагается большое количество рибосом, и иногда удается наблюдать непосредственный переход этой мембраны в систему каналов гранулярной эндоплазматической сети клетки. Внутренняя ядерная мембрана связана с тонким волокнистым белковым слоем —ядерной ламиной, состоящей из белков ламинов.
Густая сеть фибрилл ядерной ламины способна обеспечить целостность ядра, даже после растворения липидных мембран оболочки ядра в эксперименте. С внутренней стороны к ламине крепятся петли хроматина, заполняющего ядро.
Ядерная оболочка имеет отверстия диаметром около 90 нм, образующиеся за счет слияния внешней и внутренней ядерных мембран. Такие отверстия в оболочке ядра окружены сложными белковыми структурами, получившими название комплекса ядерной поры. Восемь белковых субъединиц, входящих в состав ядерной поры, располагаются вокруг перфорации ядерной оболочки в виде колец, диаметром около120 нм, наблюдаемых в электронный микроскоп с обеих сторон ядерной оболочки. Белковые субъединицы комплекса поры имеют выросты, направленные к центру поры, где иногда видна «центральная гранула»
диаметром 10-40 нм. Размер ядерных пор и их структура стандартны для всех клеток эукариот. Число ядерных пор зависит от метаболической активности клеток: чем выше уровень синтетических процессов в клетке, тем больше пор на единицу площади поверхности клеточного ядра.
В процессе ядерно-цитоплазматического транспорта ядерные поры функционируют как некое молекулярное сито, пропуская ионы и мелкие молекулы (сахара, нуклеотиды, АТФ и др.) пассивно, по градиенту концентрации, и осуществляя активный избирательный транспорт крупных молекул белков и рибонуклеопротеидов, то есть комплексов рибонуклеиновых кислот (РНК) с белками. Так, например, белки, транспортируемые в ядро из цитоплазмы, где они синтезируются, должны иметь определенные последовательности примерно из 50 аминокислот, (т. наз. NLS последовательности), «узнаваемые» комплексом ядерной поры. В этом случае комплекс ядерной поры, затрачивая энергию в виде АТФ, активно транслоцирует белок из цитоплазмы в ядро.
Хроматин
Клеточное ядро является вместилищем практически всей генетической информации клетки, поэтому основное содержимое клеточного ядра — это хроматин: комплекс дезоксирибонуклеиновойкислоты (ДНК) и различных белков. В ядре и, особенно, в митотических хромосомах, ДНК хроматина многократно свернута, упакована особым образом для достижения высокой степени компактизации. Ведь все длинные нити ДНК, общая длина которых составляет, например, у человека около 164 см, необходимо уложить в клеточное ядро, диаметр которого всего несколько микрометров. Эта задача решается последовательной упаковкой ДНК в хроматине с помощью специальных белков. Основная масса белков хроматина — это белки гистоны, входящие в состав глобулярных субъединиц хроматина, называемых нуклеосомами. Всего существует 5 видов белков гистонов. Нуклеосома представляет собой цилиндрическую частицу, состоящую из 8 молекул гистонов, диаметром около 10 нм, на которую «намотано» чуть менее двух витков нити молекулы ДНК. В электронном микроскопе такой искусственно деконденсированный хроматин выглядит как «бусины на нитке». В живом ядре клетки нуклеосомы плотно объединены между собой с помощью еще одного линкерного гистонового белка, образуя так называемую элементарную хроматиновую фибриллу, диаметром 30 нм. Другие белки, негистоновой природы, входящие в состав хроматина обеспечивают дальнейшую компактизацию, т. е. укладку, фибрилл хроматина, которая достигает своих максимальнах значений при делении клетки в митотических или мейотических хромосомах. В ядре клетки хроматин присутствует как в виде плотного конденсированного хроматина, в котором 30 нм элементарные фибриллы упакованы плотно, так и в виде гомогенного диффузного хроматина. Количественное соотношение этих двух видов хроматина зависит от характера метаболической активности клетки, степени ее дифференцированности. Так, например, ядра эритроцитов птиц, в которых не происходит активных процессов репликации и транскрипции, содержат практически только плотный конденсированный хроматин. Некоторая часть хроматина сохраняет свое компактное, конденсированное
состояние в течение всего клеточного цикла — такой хроматин называется гетерохроматином и отличается от эухроматина рядом свойств.
Репликация и транскрипция
Клетки эукариот содержат обычно несколько хромосом (от двух до нескольких сотен), которые теряют в ядре (в интерфазе, т. е. между митотическоми делениями) клетки свою компактную форму, разрыхляются и заполняют объем ядра в виде хроматина. Несмотря на деконденсированное состояние, каждая хромосома занимает в ядре строго определенное положение и связана с ядерной оболочкой посредством ламины. Строго закреплены на внутренней поверхности оболочки ядра такие структуры хромосом, как центромеры и теломеры. На определенной стадии жизненного цикла клетки, в синтетическом периоде, происходит репликация, т. е. удвоение всей ДНК ядра, и хроматина становится в два раза больше. Белки, необходимые для этого процесса, поступают, конечно, из цитоплазмы через ядерные поры. Таким образом, клетка готовится к предстоящему клеточному делению — митозу, когда общее количество ДНК в ядре вернется к первоначальному уровню.
Реализация генетической информации, заключенной в ДНК в виде генов, начинается с транскрипции,т. е. с синтеза информационных РНК (и-РНК) — точных копий генов, по которым затем будут строиться в цитоплазме на рибосомах белки. Этот процесс проходит в различных точках в объеме ядра, морфологически ничем не отличающихся от окружающего хроматина. Чаще всего удается наблюдать транскрипцию диффузного, т.е. деконденсированного хроматина.
Кроме хроматина, составляющего хромосомы, в ядрах эукариот обычно содержится одно или несколько ядрышек. Это плотные структуры, не имеющие собственной оболочки и представляющие собой скопления молекул другого типа РНК — рибосомной РНК (р-РНК) в комплексе с белками. Такие комплексы называют рибонуклеопротеидами (РНП). Ядрышки имеют стандартную морфологию и образуются в ядре после деления клетки вокруг постояннодействующих точек активного синтеза рибосомной РНК. Гены рибосомной РНК, в отличие от большинства других генов, кодирующих белки, содержатся в геноме в виде многочисленных копий. Эти копии, расположенные в молекуле ДНК тандемно, т. е. друг за другом, располагаются в определенных районах нескольких хромосом генома. Такие районы хромосом называют ядрышковыми организаторами. Морфологически в ядрышке с помощью электронного микроскопа можно выделить следующие 3 зоны: гомогенные компактные фибриллярные центры, содержащие ДН ядрышковых организаторов; плотный фибриллярный компонент вокруг них, где идет транскрипция генов рибосомной РНК и массивный гранулярный компонент ядрышка, состоящий из частиц РНП — будущих рибосом. Эти гранулы РНП, образующиеся в ядрышке, транспортируются в цитоплазму и образуют рибосомы, осуществляющие синтез всех белков клетки. Третий основной тип клеточных РНК — мелкие транспортные РНК — транскрибируются в различных участках ядра и выходят в цитоплазму через ядерные поры. Там они, как известно, обеспечивают транспортировку аминокислот к рибосомам в процессе синтеза белков.
Ядерный белковый матрикс
Для осуществления процессов репликации, транскрипции, а также поддержания определенного положения хромосом в объеме ядра существуют каркасные белковые структуры, называемое ядерным белковым матриксом. Такой матрикс состоит, по крайней мере из трех морфологических компонентов: периферического фиброзного слоя- ламины; внутреннего, или интерхроматинового матрикса ядра и матрикса ядрышка.
Наблюдения показывают, что компоненты ядерного матрикса — это не жесткие застывшие структуры, они динамичны и могут сильно видоизменяться в зависимости от функциональных особенностей ядер.
Показано, что белковый матрикс имеет множество точек прочного связывания с ДНК ядра, которая, в свою очередь, имеет специальные последовательности нуклеотидов, необходимые для этого.
Схеме 2
ЯДРО Ядерная оболочка
Хроматин
Ядерный белковый матрикс
Ядерный сок
ЯДРО – управляет и регулирует всеми процессами жизнедеятельности клетки
Таблица 3
клеточный
Отдельная клетка
субклеточный
Отдельная часть целого
молекулярный
Молекулы веществ – органических и
неорганических,
которые входят в состав и клеток, и организмов
Ядро — важнейшая составная часть клетки грибов, растений и животных. Клеточное ядро содержит ДНК, т. е. гены, и благодаря этому выполняет две главные функции:
1) хранение и воспроизведение генетической информации
2) регуляцию процессов обмена веществ, протекающих в клетке.
Безъядерная клетка не может долго существовать, и ядро тоже не способно к самостоятельному существованию, поэтому цитоплазма и ядро образуют взаимозависимую систему.
Как правило, клетки содержат одно ядро. Нередко можно наблюдать 2—3 ядра в одной клетке, например в клетках печени. Известны и многоядерные клетки, причем число ядер может достигать нескольких десятков. Форма ядра зависит большей частью от формы клетки, она может быть и совершенно неправильной.
Ядро окружено оболочкой, которая состоит из двух мембран. Наружная ядерная мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, внутренняя мембрана гладкая. Ядерная оболочка — часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов. Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями. Во-первых, ядерная оболочка пронизана многочисленными порами, через которые происходит обмен молекулами между ядром и цитоплазмой. Во-вторых, вещества могут попадать из ядра в цитоплазму и обратно путем отшнуровывания впячиваний и выростов ядерной оболочки (рис. 2).
Рис. 2. Возможные пути обмена веществами между ядром и цитоплазмой:
1 — перемещение веществ через поры ядерной оболочки,
2 — впячивание цитоплазмы внутрь ядра,
3 — выпячивание ядерной оболочки в цитоплазму,
4 — продолжение мембран ядерной оболочки в каналы эндоплазматической сети,
5 — часть каналов открывается в окружающую (внеклеточную) среду
Несмотря на активный обмен между ядром и цитоплазмой, ядерная оболочка отграничивает ядерное содержимое от цитоплазмы, обеспечивая тем самым различия в их химическом составе. Это необходимо для нормального функционирования ядерных структур.Содержимое ядра представляет собой ядерный сок в гелеобразном состоянии, в котором располагаются хроматин и одно или несколько ядрышек.
В живой клетке ядерный сок выглядит бесструктурной массой, заполняющей промежутки между структурами ядра. В состав ядерного сока входят различные белки (в том числе большинство ферментов ядра), свободные нуклеотиды, аминокислоты, а также продукты жизнедеятельности ядрышка и хроматина, транспортируемые затем из ядра в цитоплазму.
Хроматином (от греч. хрома — окраска, цвет) называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин состоит из ДНК и белков и представляет собой спирализованные и уплотненные участки хромосом. Спирализованные участки хромосом в генетическом отношении неактивны. Свою специфическую функцию — передачу генетической информации — могут осуществлять только деспирализованные — раскрученные участки хромосом, которые в силу своей малой толщины не видны в световой микроскоп. В делящихся клетках все хромосомы сильно спирализуются, укорачиваются и приобретают компактные размеры и форму.
Форма хромосом зависит от положения так называемой первичной перетяжки, или центромеры, — области, к которой во время деления клетки (митоза) прикрепляются нити веретена деления. Центромера делит хромосому на два плеча, которые могут быть одинаковой или разной длины .
Число хромосом не зависит от уровня организации вида и не всегда указывает на его родственные связи: количество их может быть одинаковым у представителей очень далеких друг от друга систематических групп — и может сильно различаться у близких по происхождению видов. Например, у таких разных организмов, как шимпанзе, таракан и перец, диплоидное число хромосом одинаково и равно 48; у человека — 46 хромосом, а у гораздо проще устроенного сазана — 104. Таким образом, характеристика хромосомного набора в целом видоспецифична, т. е. свойственна только одному какому-то виду организмов растений или животных. Совокупность количественных (число и размеры) и качественных (форма) признаков хромосомного набора соматической клетки называют кариотипом Число хромосом в кариотипе большинства видов живых организмов четное. Это объясняется тем, что в каждой соматической клетке находятся две одинаковые по форме и размеру хромосомы: одна — из отцовского организма, вторая — из материнского.
Хромосомы, одинаковые по форме и размеру и несущие одинаковые гены, называют гомологичными. Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, носит название двойного (или диплоидного) и обозначается 2л. Количество ДНК, соответствующее диплоидному набору хромосом, обозначают 2с. Из каждой пары гомологичных хромосом в половые клетки попадает только одна, и поэтому хромосомный набор гамет называют одинарным (или гаплоидным).
После завершения деления клетки хромосомы деспирализуются и в ядрах образовавшихся дочерних клеток снова становятся видимыми только тонкая сеточка и глыбки хроматина.
Третья характерная для ядра клетки структура — ядрышко. Оно представляет собой плотное тельце, погруженное в ядерный сок. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деления возникают вновь.
Ядрышко не является самостоятельной структурой ядра. Оно образуется вокруг участка хромосомы, в котором закодирована структура рибосомальной РНК (рРНК). В нем содержится большое число молекул рРНК. Кроме накопления рРНК, в ядрышке происходит формирование рибосом, которые потом перемещаются в цитоплазму. Таким образом, ядрышко — это скопление рРНК и рибосом на разных этапах формирования.
Учитель:
Заполняя таблицу №2
останавливается на строении и функциях ядра, ядерная
оболочка, хроматин, репликация и транскрипция, ядерный белковый матрикс
Главный тезис лекции
записывается в тетради на каждом уроке «ЯДРО КАК СИСТЕМА И ПОДСИСТЕМА КЛЕТКИ.
Целостность и дискретность любой системы, взаимосвязь дискретных единиц между собой для выполнения функции целого».
Демонстрация таблиц, рисунков.
Материал лекции в распечатанном виде в инструктивной карте.
Учащиеся:
Следят за текстом, подчеркивают новые понятия, по окончании рассказа учителя называют главные функции органоидов.
Запись в инструктивной карте.
Запись в инструктивной карте.
Запись в инструктивной карте.
Запись в инструктивной карте.
Ученик:
Совместно с учителем оформляют в тетради схему №2, делает обобщение по значению ядра в клетки
Оформляет в тетради
таблицу №3, на основе полученных знаний и делает обобщение, что не только клетка – система, но и ядро
Итак,
«Жизнь – это макромолекулярная система, для которой характерна определенная иерархическая организация, а также способность к воспроизведению, обмен веществ, тщательно регулируемый поток энергии, - являет собой распространяющийся центр упорядоченности в менее упорядоченной Вселенной»
А.А.Ляпунов
Учитель:
Приводит определение жизни по Ляпунову
Ученик:
На данном высказывании,
обобщает урок, обсуждая степень достижения цели, поставленной вначале.
Домашнее задание
На примере данного алгоритма, составить схему на каждый органоид:
НАРУЖНАЯ ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА
ЦИТОПЛАЗМАТИЧЕСКИЙ МАТРИКС
ПЛАСТИДЫ (ЛЕЙКОПЛАСТЫ, ХРОМОПЛАСТЫ, ХЛОРОПЛАСТЫ)
ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ 5. ЯДРО 6. ЛИЗОСОМЫ 7. КЛЕТОЧНЫЙ ЦЕНТР 8. КОМПЛЕКС ГОЛЬДЖИ 9. ЯДРЫШКО 10. МИТОХОНДРИИ 11. ВАКУОЛИ
схема №3
Для выполнения домашнего задания используется схему №3
Нравится материал? Поддержи автора!
Ещё документы из категории биология:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ