Конспект урока биологии на тему «Белки»

Тема: «Белки»

Необходимые пояснения:

  • средняя молекулярная масса одного аминокислотного остатка принимается за 120;


Задача № 1. Гемоглобин крови человека содержит 0,34% железа. Вычислите минимальную молекулярную массу гемоглобина.

Решение:

Мmin = 56 : 0,34% × 100% = 16 471

Задача № 2. Альбумин сыворотки крови человека имеет молекулярную массу 68400. Определите количество аминокислотных остатков в молекуле этого белка.

Решение:

68400 : 120 = 570 (аминокислот в молекуле альбумина).

Задача № 3. Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если Мглицина = 75,1? Сколько аминокислотных остатков в этом белке?

Решение:

1) Мmin = 75,1 : 0,5% × 100% = 15 020

2) 15 020 : 120 = 125 (аминокислот в этом белке)

Тема: «Нуклеиновые кислоты»

Необходимые пояснения:

  • относительная молекулярная масса одного нуклеотида принимается за 345;

  • расстояние между нуклеотидами в цепи молекулы ДНК (длина одного нуклеотида) – 0, 34 нм;

  • Правила Чаргаффа:

1. ∑(А) = ∑(Т)
2. ∑(Г) = ∑(Ц)
3. ∑(А+Г) =∑(Т+Ц)

Задача № 4. На фрагменте одной нити ДНК нуклеотиды расположены в последовательности:

А–А–Г–Т–Ц–Т–А–Ц–Г–Т–А–Т

Определите процентное содержание всех нуклеотидов в этом фрагменте ДНК и длину гена.

Решение:

1) достраиваем вторую нить (по принципу комплементарности)

2) ∑(А +Т+Ц+Г) = 24,

из них ∑(А) = 8 = ∑(Т)

24 – 100%
8 – х%
х = 33,4%

∑(Г) = 4 = ∑(Ц)

24 – 100%
4 –  х%
х = 16,6%

3) молекула ДНК двуцепочечная, поэтому длина гена равна длине одной цепи:

12 × 0,34 = 4,08 нм

Задача № 5. В молекуле ДНК на долю цитидиловых нуклеотидов приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.

Решение:

1) т.к. Ц = 18%, то и Г = 18%;

2) на долю А+Т приходится 100% – (18% +18%) = 64%, т.е. по 32%

Ответ: Г и Ц – по 18%, А и Т – по 32%.

Задача № 6. В молекуле ДНК обнаружено 880 гуанидиловых нуклеотидов, которые составляют 22% от общего числа нуклеотидов в этой ДНК.

Определите:

а) сколько других нуклеотидов в этой ДНК?
б) какова длина этого фрагмента?

Решение:

1) ∑(Г) = ∑(Ц)= 880 (это 22%);

На долю других нуклеотидов приходится 100% – (22%+22%)= 56%, т.е. по 28%;

Для вычисления количества этих нуклеотидов составляем пропорцию:

22% – 880
28% – х, отсюда х = 1120

2) для определения длины ДНК нужно узнать, сколько всего нуклеотидов содержится в 1 цепи:

(880 + 880 + 1120 + 1120) : 2 = 2000
2000 × 0,34 = 680 (нм)

Задача № 7. Дана молекула ДНК с относительной  молекулярной массой 69 000, из них 8625 приходится на долю адениловых нуклеотидов.

Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.

Решение:

1) 69 000 : 345 = 200 (нуклеотидов в ДНК),

8625 : 345 = 25 (адениловых нуклеотидов в этой ДНК),

∑(Г+Ц) = 200 – (25+25)= 150, т.е. их по 75;

2) 200 нуклеотидов в двух цепях, значит в одной – 100.

100 × 0,34 = 34 (нм)

Тема: «Код ДНК»

Задача № 8. Что тяжелее: белок или его ген?

Решение:

Пусть х – количество аминокислот в белке, тогда масса этого белка – 120х, количество нуклеотидов в гене, кодирующем этот белок, – 3х, масса этого гена – 345 × 3х.

120х < 345 × 3х

Ответ: ген тяжелее белка.

Задача № 9. Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так:

А–А–А–Ц–А–Ц–Ц–Т–Г–Ц–Т–Т–Г–Т–А–Г–А–Ц

Напишите последовательности аминокислот, которой начинается цепь инсулина.

Решение:

Задание выполняется с помощью таблицы, в которой нуклеотиды в иРНК (в скобках – в исходной ДНК) соответствуют аминокислотным остаткам.

Ответ: фенилаланин – валин – аспарагиновая кислота – глутаминовая кислота – гистидин – лейцин. Задача № 10. Вирусом табачной мозаики (РНК-содержащий вирус) синтезируется участок белка с аминокислотной последовательностью: 
Ала – Тре – Сер – Глу – Мет-
Под действием азотистой кислоты (мутагенный фактор) цитозин в результате дезаминирования превращается в урацил. Какое строение будет иметь участок белка вируса табачной мозаики,  если все цитидиловые нуклеотиды  подвергнутся указанному химическому превращению?
Решение:
Ала – Тре – Сер – Глу – Мет-
ГЦУ – АЦГ – АГУ – ГАГ – АУГ
ГУУ – АУГ – АГУ – ГАГ – АУГ
Вал – Мет – Сер – Глу – Мет-



емы «Молекулярная биология» и «Генетика» – наиболее интересные и сложные темы в курсе «Общая биология». Эти темы изучаются и в 9-х, и в 11­х классах, но времени на отработку умения решать задачи в программе явно недостаточно. Однако умение решать задачи по генетике и молекулярной биологии предусмотрено Стандартом биологического образования, а также  такие задачи входят в состав КИМ ЕГЭ.

Для  решения задач по молекулярной биологии  необходимо владеть следующими биологическими понятиями: виды нуклеиновых  кислот,строение ДНК,  репликация ДНК , функции ДНК, строение  и функции РНК, генетический код, свойства генетического кода,мутация.

Типовые задачи знакомят с основными приемами рассуждений в генетике, а "сюжетные"– полнее раскрывают и иллюстрируют особенности этой науки, делая ее интересной и привлекательной для учащихся. Подобранные задачи характеризуют генетику как точную науку, использующую математические методы анализа. Решение задач в биологии требует умения анализировать фактический материал, логически думать и рассуждать , а также определенной изобретательности при решении особенно трудных  и запутанных задач.

Для закрепления теоретического материала по способам и приемам  решения задач предлагаются задачи для самостоятельного решения, а также вопросы для самоконтроля.

Примеры решения задач


Необходимые пояснения:

  • Один шаг это полный виток спирали ДНК–поворот на 360o

  • Один шаг составляют 10 пар нуклеотидов

  • Длина одного шага – 3,4 нм

  • Расстояние между двумя нуклеотидами – 0,34 нм

  • Молекулярная масса одного нуклеотида – 345 г/моль

  • Молекулярная масса одной аминокислоты – 120 г/мол

  • В молекуле ДНК: А+Г=Т+Ц (Правило Чаргаффа: ∑(А) = ∑(Т), ∑(Г) = ∑(Ц), ∑(А+Г) =∑(Т+Ц)

  • Комплементарность нуклеотидов: А=Т; Г=Ц

  • Цепи ДНК удерживаются водородными связями, которые образуются между комплементарными азотистыми основаниями: аденин с тимином соединяются 2 водородными связями, а гуанин с цитозином тремя.

  • В среднем один белок содержит 400 аминокислот;

  • вычисление молекулярной массы белка:

 
где Мmin – минимальная молекулярная масса белка,
а – атомная или молекулярная масса компонента,
в – процентное содержание компонента.

Задача № 1.Одна из цепочек  ДНК имеет последовательность нуклеотидов : АГТ  АЦЦ  ГАТ  АЦТ  ЦГА  ТТТ  АЦГ  ... Какую последовательность нуклеотидов имеет вторая цепочка ДНК той же молекулы. Для наглядности  можно использовать  магнитную "азбуку" ДНК (прием автора статьи) .
Решение: по принципу комплементарности достраиваем вторую цепочку (А-Т,Г-Ц) .Она выглядит следующим образом: ТЦА  ТГГ  ЦТА   ТГА  ГЦТ  ААА  ТГЦ.

Задача № 2. Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так: ААА  ЦАЦ  ЦТГ  ЦТТ  ГТА  ГАЦ. Напишите последовательности аминокислот, которой начинается цепь инсулина.
Решение: Задание выполняется с помощью таблицы генетического кода, в которой нуклеотиды в иРНК (в скобках – в исходной ДНК) соответствуют аминокислотным остаткам.

Задача № 3. Большая из двух цепей белка инсулина имеет (так называемая цепь В) начинается со следующих аминокислот : фенилаланин-валин-аспарагин-глутаминовая кислота-гистидин-лейцин. Напишите последовательность нуклеотидов в начале участка молекулы ДНК,  хранящего информацию об этом белке.

Решение (для удобства используем табличную форму записи решения): т.к. одну аминокислоту могут кодировать несколько триплетов, точную структуру и-РНК  и участка  ДНКопределить невозможно, структура может варьировать. Используя принцип комплементарности  и таблицу генетического кода получаем один из вариантов:

Цепь белка

Фен

Вал

Асн

Глу

Гис

Лей

и-РНК

УУУ

ГУУ

ААУ

ГАА

ЦАЦ

УУА

ДНК

1-я цепь

ААА

ЦАА

ТТА

ЦТТ

ГТГ

ААТ

2-я цепь

ТТТ

ГТТ

ААТ

ГАА

ЦАЦ

ТТА

Задача № 4. Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ  ЦГЦ  ТЦА  ААА  ТЦГ  ...  Укажите строение соответствующего участка белка, информация о котором содержится в данном гене. Как отразится на строении  белка удаление из гена четвертого нуклеотида?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем:

Цепь ДНК

ЦГГ

ЦГЦ

ТЦА

ААА

ТЦГ

и -РНК

ГЦЦ

ГЦГ

АГУ

УУУ

АГЦ

Аминокислоты цепи белка

Ала-Ала-Сер-Фен-Сер

При удалении из гена четвертого нуклеотида – Ц произойдут заметные изменения – уменьшится количество и состав аминокислот в  белке:

Цепь ДНК

ЦГГ

ГЦТ

ЦАА

ААТ

ЦГ

и -РНК

ГЦЦ

ЦГА

ГУУ

УУА

ГЦ

Аминокислоты цепи белка

Ала-Арг-Вал-Лей-

Задача № 5. Вирусом табачной мозаики (РНК-содержащий вирус) синтезируется участок белка с аминокислотной последовательностью: Ала – Тре – Сер – Глу – Мет-. Под действием азотистой кислоты (мутагенный фактор) цитозин в результате дезаминирова ния превращается в урацил. Какое строение будет иметь участок белка вируса табачной мозаики,  если все цитидиловые нуклеотиды  подвергнутся указанному химическому превращению?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем  :

Аминокислоты цепи белка (исходная)

Ала – Тре – Сер – Глу – Мет-

и -РНК (исходная)

ГЦУ

АЦГ

АГУ

ГАГ

АУГ

и -РНК (дезаминированная)

ГУУ

АУГ

АГУ

ГАГ

АУГ

Аминокислоты цепи белка (дезаминированная)

Вал – Мет – Сер – Глу – Мет-

Задача № 6. При  синдроме Фанкоми (нарушение образования костной ткани)  у больного с мочой выделяются аминокислоты , которым соответствуют кодоны в и -РНК : АУА   ГУЦ  АУГ  УЦА  УУГ  ГУУ  АУУ. Определите, выделение каких аминокислот с мочой характерно  для синдрома Фанкоми, если у здорового человека в моче содержатся аминокислоты аланин, серин, глутаминовая кислота, глицин.

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем:

и -РНК

АУА

ГУЦ

АУГ

УЦА

УУГ

ГУУ

АУУ

Аминокислоты цепи белка (больного человека)

Изе-Вал-Мет-Сер-Лей-Вал-Иле

Аминокислоты цепи белка (здорового человека)

Ала-Сер-Глу-Гли

Таким образом, в моче больного человека только одна аминокислота (серин) такая же как, у здорового человека, остальные – новые, а три, характерные для здорового человека, отсутствуют.

Задача № 7. Цепь А инсулина быка в 8-м звене содержит аланин, а лошади – треонин, в 9-м звене соответственно серин и глицин. Что можно сказать о происхождении инсулинов?

Решение (для удобства  сравнения используем табличную форму записи решения): Посмотрим, какими триплетами в и-РНК кодируются упомянутые в условии задачи аминокислоты.

Организм

Бык

Лошадь

8-е звено

Ала

Тре

и- РНК

ГЦУ

АЦУ

9-е звено

Сер

Гли

и- РНК

АГУ

ГГУ

Т.к. аминокислоты кодируются  разными триплетами, взяты триплеты, минимално отличающиеся друг от друга. В данном случае  у лошади и быка в 8-м и 9-м звеньях  изменены аминокислоты в результате замены первых нуклеотидов в триплетах и -РНК : гуанин заменен на аденин ( или наоборот). В двухцепочечной ДНК  это будет равноценно замене пары Ц-Г  на  Т-А (или наоборот).
Следовательно, отличия цепей А инсулина быка и  лошади обусловлены транзициями в участке молекулы ДНК, кодирующей 8-е и 9-е звенья цепи А инсулинов быка и лошади.

Задача № 7 . Исследования показали, что в и- РНК содержится 34% гуанина,18% урацила, 28% цитозина и 20% аденина.Определите процентный состав  азотистых оснваний в участке ДНК, являющейся матрицей для данной и-РНК.
Решение (для удобства   используем табличную форму записи решения): Процентное соотношение азотистых оснований высчитываем исходя из принципа комплементарности:

и-РНК

Г

У

Ц

А

34%

18%

28%

20%

ДНК (смысловая цепь, считываемая)

Г

А

Ц

Т

28%

18%

34%

20%

ДНК (антисмысловая цепь)

Г

А

Ц

Т

34%

20%

28%

18%

Суммарно  А+Т  и Г+Ц в смысловой цепи будут составлять: А+Т=18%+20%=38%  ; Г+Ц=28%+34%=62%. В антисмысловой (некодируемой) цепи суммарные показатели будут такими же , только процент отдельных оснований будет обратный: А+Т=20%+18%=38%  ; Г+Ц=34%+28%=62%. В обеих же цепях в парах комплиментарных оснований будет поровну, т.е аденина и тимина – по 19%, гуанина и цитозина по 31%.

Задача № 8.  На фрагменте одной нити ДНК нуклеотиды расположены в последователь ности:  А–А–Г–Т–Ц–Т–А–Ц–Г–Т–А–Т. Определите процентное содержание всех нукле отидов в этом фрагменте ДНК и длину гена.

Решение:

1) достраиваем вторую нить (по принципу комплементарности)

2) ∑(А +Т+Ц+Г) = 24,из них ∑(А) = 8 = ∑(Т)

24 – 100%

=> х = 33,4%

8 – х%


24 – 100%

=>  х = 16,6%

4 –  х%

(Г) = 4 = ∑(Ц) 

   
3) молекула ДНК двуцепочечная, поэтому длина гена равна длине одной цепи:

12 × 0,34 = 4,08 нм

Задача № 9. В молекуле ДНК на долю цитидиловых нуклеотидов приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.

Решение:

1) т.к. Ц = 18%, то и Г = 18%;
2) на долю А+Т приходится 100% – (18% +18%) = 64%, т.е. по 32%

Задача № 10. В молекуле ДНК обнаружено 880 гуанидиловых нуклеотидов, которые составляют 22% от общего числа нуклеотидов в этой ДНК. Определите: а) сколько других нуклеотидов в этой ДНК? б) какова длина этого фрагмента?

Решение:

1) ∑(Г) = ∑(Ц)= 880 (это 22%); На долю других нуклеотидов приходится 100% – (22%+22%)= 56%, т.е. по 28%; Для вычисления количества этих нуклеотидов составляем пропорцию:

22% – 880
28% – х, отсюда х = 1120

2) для определения длины ДНК нужно узнать, сколько всего нуклеотидов содержится в 1 цепи:

(880 + 880 + 1120 + 1120) : 2 = 2000
2000 × 0,34 = 680 (нм)

Задача № 11. Дана молекула ДНК с относительной  молекулярной массой 69 000, из них 8625 приходится на долю адениловых нуклеотидов. Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.

Решение:

1) 69 000 : 345 = 200 (нуклеотидов в ДНК), 8625 : 345 = 25 (адениловых нуклеотидов в этой ДНК),∑(Г+Ц) = 200 – (25+25)= 150, т.е. их по 75;
2) 200 нуклеотидов в двух цепях, значит в одной – 100. 100 × 0,34 = 34 (нм)

Задача № 12. Что тяжелее: белок или его ген?

Решение: Пусть х – количество аминокислот в белке, тогда масса этого белка – 120х, количество нуклеотидов в гене, кодирующем этот белок, – 3х, масса этого гена – 345 × 3х.  120х < 345 × 3х, значит ген тяжелее белка.

Задача № 13. Гемоглобин крови человека содержит 0, 34% железа. Вычислите минимальную молекулярную массу гемоглобина.

Решение: Мmin = 56 : 0,34% · 100% = 16471

Задача №14. Альбумин сыворотки крови человека имеет молекулярную массу 68400. Определите количество аминокислотных остатков в молекуле этого белка.

Решение: 68400 : 120 = 570 (аминокислот в молекуле альбумина)

Задача №15. Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если М глицина = 75,1? Сколько аминокислотных остатков в этом белке?

Решение: Мmin = 75,1 : 0,5% · 100% = 15020 ; 15020 : 120 = 125 (аминокислот в этом белке)

Задачи для самостоятельной работы

  1. Молекула ДНК распалась на две цепочки. одна из них имеет строение : ТАГ  АЦТ  ГГТ  АЦА  ЦГТ  ГГТ  ГАТ  ТЦА ... Какое строение будет иметь  вторая молекула ДНК ,когда указанная цепочка достроится до полной двухцепочечной молекулы ?

  2. Полипептидная цепь одного белка животных имеет следующее начало : лизин-глутамин-треонин-аланин-аланин-аланин-лизин-... С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

  3. Участок молекулы белка имеет следующую последовательность аминокислот: глутамин-фенилаланин-лейцин-тирозин-аргинин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.

  4. Участок молекулы белка имеет следующую последовательность аминокислот: глицин-тирозин-аргинин-аланин-цистеин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.

  5. Одна из цепей рибонуклеазы (фермента поджелудочной железы) состоит из 16 аминокислот: Глу-Гли-асп-Про-Тир-Вал-Про-Вал-Про-Вал-Гис-фен-Фен-Асн-Ала-Сер-Вал. Определите  структуру участка ДНК , кодирующего эту часть рибонуклеазы.

  6. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ГТЦ  ЦТА  АЦЦ  ГГА  ТТТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.

  7. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТЦГ  ГТЦ  ААЦ  ТТА  ГЦТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.

  8. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТГГ  АЦА  ГГТ  ТТЦ  ГТА. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.

  9. Определите порядок следования аминокислот в участке молекулы белка, если известно, что он кодируется такой последовательностью нуклеотидов ДНК: ТГА  ТГЦ   ГТТ  ТАТ  ГЦГ  ЦЦЦ. Как изменится  белок , если химическим путем будут удалены 9-й и 13-й нуклеотиды?

  10. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ  ЦГТ  ТТЦ  ТЦГ  ГТА. Как изменится структура молекулы белка, если произойдет удвоение шестого нуклеотида в цепи ДНК. Объясните результаты.

  11. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ  ТТЦ  ТЦГ  АГА. Как изменится структура молекулы белка, если произойдет удвоение восьмого нуклеотида в цепи ДНК. Объясните результаты.

  12. Под воздействием мутагенных факторов во фрагменте гена: ЦАТ  ТАГ  ГТА  ЦГТ  ТЦГ произошла замена второго триплета на триплет АТА. Объясните, как изменится структура молекулы белка.

  13. Под воздействием мутагенных факторов во фрагменте гена: АГА  ТАГ  ГТА  ЦГТ  ТЦГ произошла замена четвёртого триплета на триплет АЦЦ. Объясните, как изменится структура молекулы белка.

  14. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГЦА  УГУ  АГЦ  ААГ  ЦГЦ. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.

  15. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГАГ  ЦЦА  ААУ  АЦУ  УУА. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.

  16. Ген ДНК включает 450пар нуклеотидов. Какова длина, молекулярная масса гена и сколько аминокислот закодировано в нём?

  17. Сколько нуклеотидов содержит ген ДНК, если в нем закодировано 135 аминокислот. Какова молекулярная масса данного гена и его длина?

  18. Фрагмент одной цепи ДНК имеет следующую структуру: ГГТ АЦГ АТГ ТЦА АГА. Определите первичную структуру белка, закодированного в этой цепи, количество (%) различных видов нуклеотидов в двух цепях фрагмента и его длину.

  19. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 1500 г/моль?

  20. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 42000 г/моль?

  21. В состав белковой молекулы входит 125 аминокислот. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.

  22. В состав белковой молекулы входит 204 аминокислоты. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.

  23. В синтезе белковой молекулы приняли участие 145 молекул   т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.

  24. В синтезе белковой молекулы приняли участие 128 молекул   т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.

  25. Фрагмент цепи и-РНК имеет следующую последовательность: ГГГ  УГГ  УАУ  ЦЦЦ  ААЦ  УГУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.

  26. Фрагмент цепи и-РНК имеет следующую последовательность: ГУУ  ГАА  ЦЦГ  УАУ  ГЦУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.

  27. В молекуле и-РНК содержится 13% адениловых, 27% гуаниловых и 39% урациловых нуклеотидов. Определите соотношение всех видов  нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК.

  28. В молекуле и-РНК содержится 21% цитидиловых, 17% гуаниловых и 40% урациловых нуклеотидов. Определите соотношение всех видов  нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК

  29. Молекула и-РНК содержит 21% гуаниловых нуклеотидов, сколько цитидиловых нуклеотидов содержится в кодирующей цепи участка ДНК?

  30. Если в цепи молекулы ДНК, с которой транскрибирована генетическая информация, содержалось 11% адениловых нуклеотидов, сколько урациловых нуклеотидов будет содержаться в соответствующем ему отрезке и-РНК?

Используемая литература.

  1. Болгова И.В. Сборник задач по общей биологии с решениями для поступающих в вузы–М.: ООО "Издательство Оникс":"Издательство."Мир и Образование", 2008г.

  2. Воробьев О.В. Уроки биологии с применением информационных технологий .10 класс. Методическое пособие с электронным приложением–М.:Планета,2012г.

  3. Чередниченко И.П. Биология. Интерактивные дидактические материалы.6-11 класс. Ме

Задача №1. 
Дан ряд химических соединений: рибоза, дезоксирибоза, остаток фосфорной кислоты, азотистые основания – аденин, гуанин, тимин, урацил, цитозин. Определите, какие из них входят в состав ДНК, какие- в состав РНК. 

Задача №2. 
На фрагменте одной цепи ДНК нуклеотиды расположены в последовательности А-А-Г-Т-Ц-Т-А-Ц-Г-А-Т-Г. Изобразите схему структуры двуцепочечной молекулы ДНК; объясните, каким свойством ДНК при этом вы руководствовались; какова длина данного фрагмента ДНК. 
Примечание: каждый нуклеотид занимает по длине 0,34нм по длине цепи ДНК. 

Задача №3. 
На фрагменте одной цепи ДНК нуклеотиды расположены в такой последовательности: 
А-А-Г-Т-Ц-Т-А-Ц-Г-Т-А-Г. 
Определите схему структуры двуцепочечной молекулы ДНК, подсчитайте процентный состав нуклеотидов в этом фрагменте. 

Задача №4. 
Сколько в отдельности содержится тиминовых, адениновых, цитозиновых нуклеотидов во фрагменте молекулы ДНК, если в нем обнаружено 880 гуаниновых нуклеотидов, которые составляют 22% от общего количества нуклеотидов в этом фрагменте? 

Задача №5. 
Чему равна (в нанометрах) общая длина молекул ДНК: 
А) одного фага, если в нем содержится 200 тыс. пар нуклеотидов. 
Б) одной бактерии, если в ней общее количество нуклеотидов в 100 раз больше, чем у фага. 

Задача №6. 
По мнению некоторых ученых, общая длина всех молекул ДНК в ядре одной половой клетки человека составляет приблизительно 102 см. Сколько всео пар нуклеотидов содержится в ДНК одной клетки?


Тренируемся в решении задач по нуклеинлвым кислотам
Необходимые пояснения:
·        относительная молекулярная масса одного нуклеотида принимается за 345
·        расстояние между нуклеотидами в цепи молекулы ДНК  (=длина одного нуклеотида)-    0, 34 нм
 

·        Правила Чаргаффа:

1.     ∑(А) = ∑(Т)

2.     ∑(Г) = ∑(Ц)

3.     ∑(А+Г) = ∑(Т+Ц)

Задача №1.

На фрагменте одной нити ДНК нуклеотиды   расположены в последовательности: 
А-А-Г-Т-Ц-Т-А-Ц-Г-Т-А-Т.                                             
 
Определите процентное содержание всех нуклеотидов в этом гене и его длину.

 

Задача №2. 

 В молекуле ДНК на долю цитидиловых нуклеотидов приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.

 

Задача №3. 

В молекуле ДНК обнаружено 880 гуаниловых 
нуклеотидов, которые составляют 22% от общего числа нуклеотидов в этой ДНК.
Определите: а) сколько других нуклеотидов в этой ДНК?   б) какова длина этого фрагмента?

 

Задача №4. 

Дана молекула ДНК с относительной   молекулярной массой  69000, из них 8625   приходится на долю адениловых нуклеотидов. Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.

 

Задача №5.

  Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так:
АААЦАЦЦТГЦТТГТАГАЦ
Напишите последовательности аминокислот, которой начинается цепь инсулина (воспользуйтесь таблицей генетического кода)

 

Задача №6. 

 Вирусом табачной мозаики (РНК - овый вирус) синтезируется участок белка с аминокислотной последовательностью: 
Ала – Тре – Сер – Глу – Мет-
Под действием азотистой кислоты (мутагенный фактор) цитозин в результате дезаминирования превращается в урацил. Какое строение будет иметь участок белка вируса табачной мозаики,  если все цитидиловые нуклеотиды  подвергнутся указанному химическому превращению?

 

Задача №7

Спрогнозируй, каков процент гуанина в цепи ДНК, если известно, что аденина 17%.

 

Задача №8

Если известно, что в молекуле ДНК 28.000 нуклеотидов, а гуанина 7.000, Подсчитай каков будет процент тимина?

 

Задача №9

Если аденина 27.000 в молекуле ДНК состоящей из 145.000 нуклеотидов, то какой процент гуанина будет в этой молекуле?


Дана молекула ДНК с относительной молекулярной массой 69000, из них 8625 приходится приходится на долю адениловых нуклеотидов.

А) Найдите количество всех нуклеотидов в этой ДНК;

Б) Определите длину этого фрагмента (исходя из того, что длина одного нуклеотида равна 0,34 нм).


Примеры задач первого типа

  1. В молекуле ДНК содержится  тимина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.

  2. В молекуле ДНК содержится  тимина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.

  3. В молекуле ДНК содержится  гуанина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.

  4. В молекуле ДНК содержится  гуанина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.

  5. В молекуле ДНК содержится  цитозина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.

  6. В молекуле ДНК содержится  цитозина. Определите, сколько (в ) в этой молекуле содержится других нуклеотидов.

Примеры задач второго типа

  1. В трансляции участвовало  молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

  2. В трансляции участвовало  молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

  3. В трансляции участвовало  молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

  4. Фрагмент ДНК состоит из  нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

  5. Фрагмент ДНК состоит из  нуклеотида. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

  6. Фрагмент ДНК состоит из  нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

  7. Фрагмент ДНК состоит из  нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

  8. Фрагмент ДНК состоит из  нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

Примеры задач третьего типа

  1. Фрагмент одной из цепей ДНК имеет следующее строение: ААГЦГТГЦТЦАГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  2. Фрагмент одной из цепей ДНК имеет следующее строение: ЦЦАТАТЦЦГГАТ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  3. Фрагмент одной из цепей ДНК имеет следующее строение: АГТТТЦТГГЦАА. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  4. Фрагмент одной из цепей ДНК имеет следующее строение: ГАТТАЦЦТАГТТ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  5. Фрагмент одной из цепей ДНК имеет следующее строение: ЦТАТЦЦГЦТГТЦ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  6. Фрагмент одной из цепей ДНК имеет следующее строение: ААГЦТАЦАГАЦЦ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  7. Фрагмент одной из цепей ДНК имеет следующее строение: ГГТГЦЦГГАААГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

  8. Фрагмент одной из цепей ДНК имеет следующее строение: ЦЦЦГТАААТТЦГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).

Примеры задач четвертого типа

  1. Фрагмент и-РНК имеет следующее строение: ГАУГАГУАЦУУЦААА. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

  2. Фрагмент и-РНК имеет следующее строение: ЦГАГГУАУУЦЦЦУГГ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

  3. Фрагмент и-РНК имеет следующее строение: УГУУЦААУАГГААГГ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

  4. Фрагмент и-РНК имеет следующее строение: ЦЦГЦААЦАЦГЦГАГЦ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

  5. Фрагмент и-РНК имеет следующее строение: АЦАГУГГЦЦААЦЦЦУ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

  6. Фрагмент и-РНК имеет следующее строение: ГАЦАГАЦУЦААГУЦУ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

  7. Фрагмент и-РНК имеет следующее строение: УГЦАЦУГААЦГЦГУА. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

  8. Фрагмент и-РНК имеет следующее строение: ГЦАГГЦЦАГУУАУАУ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

  9. Фрагмент и-РНК имеет следующее строение: ГЦУААУГУУЦУУУАЦ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

Примеры задач пятого типа

  1. Фрагмент ДНК имеет следующую последовательность нуклеотидов ТАТГГГЦТАТТГ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

  2. Фрагмент ДНК имеет следующую последовательность нуклеотидов ЦААГАТТТТГТТ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

  3. Фрагмент ДНК имеет следующую последовательность нуклеотидов ГЦЦАААТЦЦТГА. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

  4. Фрагмент ДНК имеет следующую последовательность нуклеотидов ТГТЦЦАТЦАААЦ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

  5. Фрагмент ДНК имеет следующую последовательность нуклеотидов ЦАТГААААТГАТ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

Примеры задач шестого типа

  1. В клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  2. В клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  3. В клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  4. В клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  5. В клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  6. В клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  7. В клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

  8. В клетке животного диплоидный набор хромосом равен . Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

Примеры задач седьмого типа

  1. В диссимиляцию вступило  молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.

  2. В диссимиляцию вступило  молекулы глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.

  3. В диссимиляцию вступило  молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.

  4. В диссимиляцию вступило  молекулы глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.

  5. В цикл Кребса вступило  молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

  6. В цикл Кребса вступило  молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

  7. В цикл Кребса вступило  молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

  8. В цикл Кребса вступило  молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

  9. В цикл Кребса вступило  молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

  10. В цикл Кребса вступило  молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

Приложение I Генетический код (и-РНК)

Первое основание

Второе основание




Третье основание


У

Ц

А

Г


У

Фен

Сер

Тир

Цис

У


Фен

Сер

Тир

Цис

Ц


Лей

Сер

А


Лей

Сер

Три

Г

Ц

Лей

Про

Гис

Арг

У


Лей

Про

Гис

Арг

Ц


Лей

Про

Глн

Арг

А


Лей

Про

Глн

Арг

Г

А

Иле

Тре

Асн

Сер

У


Иле

Тре

Асн

Сер

Ц


Иле

Тре

Лиз

Арг

А


Мет

Тре

Лиз

Арг

Г

Г

Вал

Ала

Асп

Гли

У


Вал

Ала

Асп

Гли

Ц


Вал

Ала

Глу

Гли

А


Вал

Ала

Глу

Гли

Г

Ответы

  1. А=. Г=Ц=.

  2. А=. Г=Ц=.

  3. Ц=. А=Т=.

  4. Ц=. А=Т=.

  5. Г=. А=Т=.

  6. Г=. А=Т=.

  7.  аминокислот,  триплетов,  нуклеотидов.

  8.  аминокислот,  триплетов,  нуклеотидов.

  9.  аминокислот,  триплетов,  нуклеотидов.

  10.  триплета,  аминокислоты,  молекулы т-РНК.

  11.  триплетов,  аминокислот,  молекул т-РНК.

  12.  триплет,  аминокислота,  молекула т-РНК.

  13.  триплета,  аминокислоты,  молекулы т-РНК.

  14.  триплетов,  аминокислот,  молекул т-РНК.

  15. и-РНК: УУЦ-ГЦА-ЦГА-ГУЦ. Аминокислотная последовательность: фен-ала-арг-вал.

  16. и-РНК: ГГУ-АУА-ГГЦ-ЦУА. Аминокислотная последовательность: гли-иле-гли-лей.

  17. и-РНК: УЦА-ААГ-ЦЦГ-ГУУ. Аминокислотная последовательность: сер-лиз-про-вал.

  18. и-РНК: ЦУА-АУГ-ГАУ-ЦАА. Аминокислотная последовательность: лей-мет-асп-глн.

  19. и-РНК: ГАУ-АГГ-ЦГА-ЦАГ. Аминокислотная последовательность: асп-арг-арг-глн.

  20. и-РНК: УУЦ-ГАУ-ГУЦ-УГГ. Аминокислотная последовательность: фен-асп-вал-три.

  21. и-РНК: ЦЦА-ЦГГ-ЦЦУ-УУЦ. Аминокислотная последовательность: про-арг-про-фен.

  22. и-РНК: ГГГ-ЦАУ-УУА-АГЦ. Аминокислотная последовательность: гли-гис-лей-сер.

  23. Фрагмент ДНК: ЦТАЦТЦАТГААГТТТ. Антикодоны т-РНК: ЦУА, ЦУЦ, АУГ, ААГ, УУУ. Аминокислотная последовательность: асп-глу-тир-фен-лиз.

  24. Фрагмент ДНК: ГЦТЦЦАТААГГГАЦЦ. Антикодоны т-РНК: ГЦУ, ЦЦА, УАА, ГГГ, АЦЦ. Аминокислотная последовательность: арг-гли-иле-про-три.

  25. Фрагмент ДНК: АЦААГТТАТЦЦТТЦЦ. Антикодоны т-РНК: АЦА, АГУ, УАУ, ЦЦУ, УЦЦ. Аминокислотная последовательность: цис-сер-иле-гли-арг.

  26. Фрагмент ДНК: ГГЦГТТГТГЦГЦТЦГ. Антикодоны т-РНК: ГГЦ, ГУУ, ГУГ, ЦГЦ, УЦГ. Аминокислотная последовательность: про-глн-гис-ала-сер.

  27. Фрагмент ДНК: ТГТЦАЦЦГГТТГГГА. Антикодоны т-РНК: УГУ, ЦАЦ, ЦГГ, УУГ, ГГА. Аминокислотная последовательность: тре-вал-ала-асн-про.

  28. Фрагмент ДНК: ЦТГТЦТГАГТТЦАГА. Антикодоны т-РНК: ЦУГ, УЦУ, ГАГ, УУЦ, АГА. Аминокислотная последовательность: асп-арг-лей-лиз-сер.

  29. Фрагмент ДНК: АЦГТГАЦТТГЦГЦАТ. Антикодоны т-РНК: АЦГ, УГА, ЦУУ, ГЦГ, ЦАУ. Аминокислотная последовательность: цис-тре-глу-арг-вал.

  30. Фрагмент ДНК: ЦГТЦЦГГТЦААТАТА. Антикодоны т-РНК: ЦГУ, ЦЦГ, ГУЦ, ААУ, АУА. Аминокислотная последовательность: ала-гли-глн-лей-тир.

  31. Фрагмент ДНК: ЦГАТТАЦААГАААТГ. Антикодоны т-РНК: ЦГА, УУА, ЦАА, ГАА, АУГ. Аминокислотная последовательность: ала-асн-вал-лей-тир.

  32. т-РНК: АУА-ЦЦЦ-ГАУ-ААЦ. Антикодон ГАУ, кодон и-РНК — ЦУА, переносимая аминокислота — лей.

  33. т-РНК: ГУУ-ЦУА-ААА-ЦАА. Антикодон ААА, кодон и-РНК — УУУ, переносимая аминокислота — фен.

  34. т-РНК: ЦГГ-УУУ-АГГ-АЦУ. Антикодон АГГ, кодон и-РНК — УЦЦ, переносимая аминокислота — сер.

  35. т-РНК: АЦА-ГГУ-АГУ-УУГ. Антикодон АГУ, кодон и-РНК — УЦА, переносимая аминокислота — сер.

  36. т-РНК: ГУА-ЦУУ-УУА-ЦУА. Антикодон УУА, кодон и-РНК — ААУ, переносимая аминокислота — асн.

  37. . Генетический набор:

    1. перед митозом  молекул ДНК;

    2. после митоза  молекулы ДНК;

    3. после первого деления мейоза  молекул ДНК;

    4. после второго деления мейоза  молекул ДНК.

  38. . Генетический набор:

    1. перед митозом  молекул ДНК;

    2. после митоза  молекулы ДНК;

    3. после первого деления мейоза  молекул ДНК;

    4. после второго деления мейоза  молекул ДНК.

  39. . Генетический набор:

    1. перед митозом  молекул ДНК;

    2. после митоза  молекулы ДНК;

    3. после первого деления мейоза  молекул ДНК;

    4. после второго деления мейоза  молекул ДНК.

  40. . Генетический набор:

    1. перед митозом  молекул ДНК;

    2. после митоза  молекулы ДНК;

    3. после первого деления мейоза  молекул ДНК;

    4. после второго деления мейоза  молекул ДНК.

  41. . Генетический набор:

    1. перед митозом  молекул ДНК;

    2. после митоза  молекулы ДНК;

    3. после первого деления мейоза  молекул ДНК;

    4. после второго деления мейоза  молекул ДНК.

  42. . Генетический набор:

    1. перед митозом  молекул ДНК;

    2. после митоза  молекулы ДНК;

    3. после первого деления мейоза  молекул ДНК;

    4. после второго деления мейоза  молекул ДНК.

  43. . Генетический набор:

    1. перед митозом  молекул ДНК;

    2. после митоза  молекулы ДНК;

    3. после первого деления мейоза  молекул ДНК;

    4. после второго деления мейоза  молекул ДНК.

  44. . Генетический набор:

    1. перед митозом  молекул ДНК;

    2. после митоза  молекулы ДНК;

    3. после первого деления мейоза  молекул ДНК;

    4. после второго деления мейоза  молекул ДНК.

  45. Поскольку из одной молекулы глюкозы образуется  молекулы ПВК и АТФ, следовательно, синтезируется АТФ. После энергетического этапа диссимиляции образуется  молекул АТФ (при распаде  молекулы глюкозы), следовательно, синтезируется  АТФ. Суммарный эффект диссимиляции равен  АТФ.

  46. Поскольку из одной молекулы глюкозы образуется  молекулы ПВК и АТФ, следовательно, синтезируется АТФ. После энергетического этапа диссимиляции образуется  молекул АТФ (при распаде  молекулы глюкозы), следовательно, синтезируется  АТФ. Суммарный эффект диссимиляции равен  АТФ.

  47. Поскольку из одной молекулы глюкозы образуется  молекулы ПВК и АТФ, следовательно, синтезируется АТФ. После энергетического этапа диссимиляции образуется  молекул АТФ (при распаде  молекулы глюкозы), следовательно, синтезируется  АТФ. Суммарный эффект диссимиляции равен  АТФ.

  48. Поскольку из одной молекулы глюкозы образуется  молекулы ПВК и АТФ, следовательно, синтезируется АТФ. После энергетического этапа диссимиляции образуется  молекул АТФ (при распаде  молекулы глюкозы), следовательно, синтезируется  АТФ. Суммарный эффект диссимиляции равен  АТФ.

  49. В цикл Кребса вступило  молекул ПВК, следовательно, распалось  молекулы глюкозы. Количество АТФ после гликолиза —  молекул, после энергетического этапа —  молекул, суммарный эффект диссимиляции  молекул АТФ.

  50. В цикл Кребса вступило  молекул ПВК, следовательно, распалось  молекулы глюкозы. Количество АТФ после гликолиза —  молекул, после энергетического этапа —  молекул, суммарный эффект диссимиляции  молекул АТФ.

  51. В цикл Кребса вступило  молекул ПВК, следовательно, распалось  молекул глюкозы. Количество АТФ после гликолиза —  молекул, после энергетического этапа —  молекул, суммарный эффект диссимиляции  молекул АТФ.

  52. В цикл Кребса вступило  молекул ПВК, следовательно, распалось  молекул глюкозы. Количество АТФ после гликолиза —  молекул, после энергетического этапа —  молекул, суммарный эффект диссимиляции  молекул АТФ.

  53. В цикл Кребса вступило  молекул ПВК, следовательно, распалось  молекул глюкозы. Количество АТФ после гликолиза —  молекул, после энергетического этапа —  молекул, суммарный эффект диссимиляции  молекул АТФ.

  54. В цикл Кребса вступило  молекул ПВК, следовательно, распалось  молекул глюкозы. Количество АТФ после гликолиза —  молекул, после энергетического этапа —  молекул, суммарный эффект диссимиляции  молекул АТФ.


Нравится материал? Поддержи автора!

Ещё документы из категории биология:

X Код для использования на сайте:
Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ