Рабочая программа по математике в 6 классе (ФГОС)
Подготовила: учитель математики
Категория: первая
Быстролетова Татьяна Дмитриевна
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа №1 им. Ляпидевского
Станица Старощербиновская Щербиновского района Краснодарского края
Рабочая программа
по математике 6 класс, ФГОС
2014 г.
1.Пояснительная записка
Данная рабочая программа по математике для 6 класса составлена на основе авторской программы Н.Я. Виленкина (Программа. Планирование учебного материала. Математика 5-6 классы / Автор-составитель В.И. Жохов, 2-е издание, стер.-М.: Мнемозина, 2010 )
Данная рабочая программа является программой 1-го вида. Согласно федеральному базисному учебному плану для образовательных учреждений РФ на изучение математики на ступени основного общего образования отводится 6 часов в неделю. Программа рассчитана на 204 часа. Обучение ведется по учебнику – Математика 6 кл.: Учебник для общеобразовательных учреждений / Н. Я. Виленкин и др. – М.: Мнемозина, 2013.
Цели обучения
Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, формирование понимания значимости математики для научно-технического прогресса.
систематическое развитие понятия числа;
выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики; подготовка обучающихся к изучению систематических курсов алгебры и геометрии.
В ходе изучения курса математики в 6 классе учащиеся продолжат развивать навыки вычислений с натуральными числами, овладеют навыками действий с обыкновенными и десятичными дробями с разными знаменателями, получат начальные преставления о понятиях: делимость чисел, «отношения и пропорции», положительные и отрицательные числа, овладеют навыками действий с целыми числами, продолжат решать уравнения, приобретут навыки построения координат на плоскости. Усвоенные знания и способы действий необходимы не только для дальнейшего успешного изучения математики и других школьных дисциплин, но и для решения многих практических задач во взрослой жизни.
Задачи обучения
Приобретение математических знаний и умений;
овладение обобщенными способами мыслительной, творческой деятельности;
освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, информационно-технологической, ценностно-смысловой).
формирование элементов самостоятельной интеллектуальной деятельности на основе овладения математическими методами познания окружающего мира (умения устанавливать, описывать, моделировать и объяснять количественные и пространственные отношения);
развитие основы логического, знаково-символического и алгоритмического мышления; пространственного воображения; математической речи; умения вести поиск информации и работать с ней;
развитие познавательных способностей;
воспитание стремления к расширению математических знаний;
способствование интеллектуальному развитию, формированию качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Рабочая программа по математике для 6 классов продолжает соответствующую программу начальной школы и ставит перед собой главной целью формирование у школьников основ научного (математического) мышления, позволяющих продолжать обучение в основной и старшей школе.
Задачи изучения математики в 6 классах:
развитие логического и критического мышления, формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимых для различных сфер человеческой деятельности;
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в основной и старшей школе (7-11 классы), изучения смежных дисциплин и применения их в повседневной жизни.
развитие представления о математике, как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования.
2. Общая характеристика учебного предмета
Программа ориентирована, главным образом, на формирование научных (математических) понятий, а не только лишь на выработку практических навыков и умений. Это предполагает особую организацию учебного процесса в форме учебной деятельности школьников.
Содержание учебной деятельности развертывается в теоретической форме – от общего к частному, от абстрактного к конкретному. Освоение понятий происходит не в форме отработки словесных формулировок, а путем введения учащихся в новый круг задач и включением их в деятельность по поиску общего способа их решения.
Поиск способа решения новой задачи является мотивационным ядром учебной деятельности, той ценностной установкой учеников, которая складывается в виде формального эффекта обучения как личностно-смысловое образование, основа желания и умения учиться.
Необходимость поиска способа решения новой задачи не диктуется требованиями учителя, учебника или программы, она обусловлена для детей внутренней логикой содержания обучения. Когда ученики обнаруживают, что задача не может быть решена теми способами, которыми они уже владеют, они сами заявляют о необходимости поиска новых способов действия. Иными словами, уже начав действовать, уже стремясь получить результат, дети фиксируют невозможность его немедленного достижения и необходимость открытия «чего-то нового». Т.о. новое понятие или способ действия не возникает для детей случайно; каждое следующее понятие с необходимостью вытекает из предыдущего. При этом поисковые действия детей (их пробы, мнения, предложения, вопросы) направлены не на внешние чувственно-представленные, непосредственно наблюдаемые свойства вещей, а на общий принцип их строения. Вскрывая этот общий принцип посредством собственных действий, осуществляемых не в словесной, а предметно-чувственной форме, ребенок тем самым обнаруживает существенное отношение, лежащее в основании нового понятия.
Отношение, которое дети обнаруживают, преобразуя объект изучения, не обладает чувственной наглядностью, оно нуждается в особом – модельном способе презентации. При этом не всякое изображение можно назвать учебной моделью, а лишь такое, которое отображает внутренние особенности объекта, не наблюдаемые непосредственно, и обеспечивает их дальнейший анализ. Учебная модель, выступая как продукт мыслительного анализа, затем сама может стать особым средством мыслительной деятельности.
С одной стороны, в процессе построения модели происходит абстракция отношения от его предметных носителей. С другой стороны, уже построенная модель, в которой отношение представлено материально, позволяет преобразовывать ее, открывая новые свойства этого отношения. Преобразовывая и переконструируя учебную модель, школьники получают возможность изучать свойства отношения как такового, без «затемнения» привходящими обстоятельствами. Представленная моделью абстракция затем конкретизируется в различных частных условиях, что позволяет применять найденный общий способ к целому классу частных задач.
Для того чтобы дети смогли через собственные поисковые действия открыть новый способ действия, необходимы особые формы организации совместной учебной деятельности класса и учителя. Основой этой организации является общеклассная дискуссия, в которой каждое высказанное предложение оценивается остальными участниками обсуждения с точки зрения соответствия способа действия и достигнутого результата. Предложения учителя подлежат такому же контролю и оценке, что и предложения учеников. При этом достоинства и недостатки предлагаемых способов действия оцениваются содержательно и ученики участвуют в выработке критериев контроля и оценки наряду с учителем. Благодаря этому у школьников складывается способность к самоконтролю и самооценке как базисным компонентам умения учиться.
Осуществление школьниками учебной деятельности способствует формированию у них таких мыслительных действий, как рефлексия, анализ и планирование, являющихся основой теоретического мышления и, одновременно развитию других познавательных процессов – восприятия, воображения, памяти. Это дает основание говорить о развивающем значении специальной организации учебной деятельности школьников.
В курсе математики 6 классов условно выделены 3 содержательные области: развитие понятия числа, величины и отношения между ними, элементы геометрии.
Первая область посвящена дальнейшему развитию понятия числа: введению новых видов чисел – обыкновенных и позиционных (десятичных) дробей, отрицательных чисел, формированию представления о системе действительных чисел.
Новые виды чисел появляются из тех же оснований, что и натуральные числа на предыдущем этапе. Исходным отношением, порождающим все виды действительного числа, является отношение величин, получаемое в результате решения задачи измерения одной величины с помощью другой, принятой в качестве единицы измерения; меняются лишь условия этой задачи, что и определяет различия видов числа и способов его обозначения. Так различные виды дробей появляются в ситуации, когда единица не укладывается в измеряемой величине целое число раз. А введение нового свойства величины – ее направленности – позволяет из того же исходного отношения получить отрицательные числа (отрицательному числу соответствует ситуация когда измеряемая величина и единица измерения имеют противоположные направления).
Появление каждого нового вида чисел сопровождается определением их места на координатной прямой. При этом координатная прямая выступает не как иллюстрация, а как основное средство моделирования, с помощью которого устанавливаются свойства чисел и способы действий с ними, которые лишь затем «отрываются» от координатной прямой и приобретают алгоритмические формы.
Тем самым к концу 6 класса у учащихся формируется представление о системе действительных чисел.
К этой же содержательной области отнесен ряд вопросов, связанных с формальной стороной использования чисел: вычисление значений числовых и буквенных выражений, решение линейных уравнений и простейших неравенств, изображение их решений на координатной прямой, описание числовых промежутков. Вводится координатная плоскость, рассматривается построение и описание простейших линий и областей на координатной плоскости. Рассмотрение этого материала направлено на обеспечение перехода к начинающемуся изучению в седьмом классе систематического курса алгебры.
Основным содержанием области «Величины и отношения между ними» являются вопросы, связанные с применением числового инструментария к решению различных прикладных задач, моделирование отношений (представлению в виде чертежей, схем, диаграмм, таблиц и т.п.), анализ и решение текстовых задач.
Геометрический материал курса в значительной степени связывается с изучением величин и действий с ними. Однако он имеет и собственно геометрическое содержание, связанное с построением идеальных геометрических образов и развитием пространственных представлений, что может рассматриваться как подготовка к начинающемуся в седьмом классе изучению систематического курса геометрии.
Одной из особенностей разворачивания геометрического материала является конструктивный подход к геометрическим понятиям. Такой подход естественным образом приводит к большому числу задач на построение, «разрезание» и «перекраивание» геометрических фигур. Таким образом, также как и в арифметической линии, при формировании понятий основополагающую роль играют предметные действия учащихся.
3. Место учебного предмета в учебном плане
Курс «Математика» изучается на ступени основного общего образования в качестве обязательного предмета в 6 кл. в общем объеме 238 ч (6 ч в неделю). Из них на урочные занятия отводится 204 ч, на внеурочные – 34 ч.
В учебном процессе используются следующие урочные и внеурочные формы работы:
Урочные формы
Внеурочные формы
общеклассная дискуссия – коллективная работа класса по постановке учебных задач, обсуждению результатов;
презентация – предъявление учащимися результатов самостоятельной работы;
проверочная работа;
проектирование в рамках уроков.
консультация – учитель работает с небольшой группой учащихся по их запросу;
мастерская – индивидуальная работа учащихся над своими математическими проблемами;
самостоятельная работа учащихся:
а) работа над совершенствованием навыка;
б) творческая работа по инициативе учащегося;
проектирование вне уроков.
Математический клуб (математический кружок, математические бои и т.п.)
4. Личностные, метапредметные и предметные результаты освоения математики
Личностными результатами изучения предмета «Математика» являются следующие качества:
независимость мышления;
воля и настойчивость в достижении цели;
представление о математической науке как сфере человеческой деятельности;
креативность мышления, инициатива, находчивость, активность при решении математической задачи;
умение контролировать процесс и результат учебной математической деятельности;
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
Познавательные УУД:
анализировать, сравнивать, классифицировать и обобщать факты и явления;
осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
создавать математические модели;
составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
вычитывать все уровни текстовой информации.
уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей.
Коммуникативные УУД:
самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
в дискуссии уметь выдвинуть контраргументы;
учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Предметными результатами изучения предмета «Математика» являются следующие умения.
выполнять арифметические действия с натуральными, десятичными, обыкновенными дробями с равными знаменателями;
употреблять термины, связанные с различными видами чисел и способами их записи: натуральное число, десятичная и обыкновенная дробь, переходить от одной формы записи к другой;
сравнивать числа, упорядочивать наборы чисел; вести сравнение различными методами;
находить значения степеней с натуральным показателем;
составлять несложные буквенные выражения и формулы; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;
решать линейные уравнения алгебраическим методом;
пользоваться основными единицами длины, массы, времени, скорости, площади, объёма; выражать более крупные единицы в более мелкие и наоборот;
решать текстовые задачи арифметическими и алгебраическими методами, включая задачи с дробями и процентами;
строить простейшие геометрические фигуры;
читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;
строить простейшие линейные, столбчатые и круговые диаграммы;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
работать на калькуляторе;
проводить несложные доказательства, получать простейшие следствия из известных ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
5. Содержание учебного предмета
№ п/п
Изучаемый материал
Кол-во часов
К/р
Авторская программа
Рабочая
программа
Глава 1. Обыкновенные дроби
111
111
1.
Делимость чисел
24
24
1
2.
Сложение и вычитание дробей с разными знаменателями
26
26
2
3.
Умножение и деление дробей с разными знаменателями
38
38
3
4.
Отношения и пропорции
23
23
2
Глава 2. Рациональные числа
93
93
5.
Положительные и отрицательные числа
16
16
1
6.
Сложение и вычитание положительных и отрицательных чисел
14
14
1
7.
Умножение и деление положительных и отрицательных чисел
15
15
1
8.
Решение уравнений
17
17
2
9.
Координаты на плоскости
16
16
1
10.
Повторение. Решение задач
15
15
Итого
204
204
14
Содержание тем учебного предмета
1. Делимость чисел (24 ч).
Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 10. Простые и составные числа. Разложение натурального числа на простые множители.
Цель: завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.
В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения прямым подбором. Понятия «наибольший общий делитель» и «наименьшее общее кратное» вместе с алгоритмами их нахождения можно не рассматривать.
Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.
Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6 • 6 = 4 • 9. Вопрос о разложении числа на простые множители не относится к числу обязательных.
2. Сложение и вычитание дробей с разными знаменателями (26 ч).
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.
Цель: выработать прочные навыки преобразования дробей, сложения и вычитания дробей.
Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. При этом рекомендуется излагать материал без опоры на понятия НОД и НОК. Умение приводить дроби к общему знаменателю используется для сравнения дробей.
При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа. Что касается сложения и вычитания смешанных чисел, которые не находят активного применения в последующем изучении курса, то учащиеся должны лишь получить представление о принципиальной возможности выполнения таких действий.
3. Умножение и деление обыкновенных дробей (38 ч).
Умножение и деление обыкновенных дробей. Основные задачи на дроби.
Цель: выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.
В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.
Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби, выполняя соответственно умножение или деление на дробь.
4. Отношения и пропорции (23 ч).
Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональностях величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.
Цель: сформировать понятия пропорции, прямой и обратной пропорциональностей величин.
Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.
Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.
В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.
5. Положительные и отрицательные числа (16 ч).
Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на прямой. Координата точки.
Цель: расширить представления учащихся о числе путем введения отрицательных чисел.
Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой, с тем чтобы она могла служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел, рассматриваемых в следующей теме.
Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.
6. Сложение и вычитание положительных и отрицательных чисел (14 ч).
Сложение и вычитание положительных и отрицательных чисел.
Цель: выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.
Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек числовой оси. При изучении данной темы целенаправленно отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.
7. Умножение и деление положительных и отрицательных чисел (15 ч).
Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.
Цель: выработать прочные навыки арифметических действий с положительными и отрицательными числами.
Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.
При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить числитель на знаменатель. В каждом конкретном случае они должны знать, в какую десятичную дробь обращается данная обыкновенная дробь — конечную или бесконечную. При этом необязательно акцентировать внимание на том, что бесконечная десятичная дробь оказывается периодической. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как , , , .
8. Решение уравнений (17 ч).
Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.
Цель: подготовить учащихся к выполнению преобразований выражений, решению уравнений.
Преобразования буквенных выражений путем раскрытия скобок, и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений:
Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приёмами решения линейных уравнений с одним неизвестным.
9. Координаты на плоскости (16 ч).
Построение перпендикуляра к прямой и параллельных прямых с помощью угольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.
Цель: познакомить учащихся с прямоугольной системой координат на плоскости.
Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя точных определений.
Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.
Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.
10. Повторение. Решение задач (15 ч).
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 6 класса.
6. Тематическое планирование
Раздел
Темы, входящие в раздел
Основное содержание по темам
Характеристика основных видов деятельности ученика
Глава 1. Обыкновенные дроби
Делимость чисел
Знакомство с понятиями «делитель», «кратное», «простое» и «составное» числа. Изучение признаков делимости на 2, 3, 5, 9, 10. Умение разложить число на простые множители.
Формулировать определения делителя и кратного, простого и составного числа, свойства и признаки делимости.
Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.).
Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера)
Сложение и вычитание дробей с разными знаменателями
Усвоение основного свойства дроби, применяемого преобразования дробей: сокращения, приведения дробей к общему знаменателю. Сравнение, сложение и вычитание дробей с разными знаменателями .
Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.
Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями.
Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их.
Умножение и деление обыкновенных дробей
Формирование навыков арифметических действий с обыкновенными дробями. Решение текстовых задач, в которых требуется найти дробь от числа или число по данному значению его дроби
Выполнять вычисления с обыкновенными дробями.
Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера)
Отношения и пропорции
Основное свойство пропорции. Решение с помощью пропорции задач на проценты. Формирование понятия прямой и обратной пропорциональной зависимости. Формирование представления о длине окружности и площади круга. Знакомство с шаром
Приводить примеры использования отношений в практике.
Решать задачи на проценты и дроби (в том числе задачи из реальной практики, используя при необходимости калькулятор); использовать понятия отношения и пропорции при решении задач.
Глава 2. Рациональные числа
Положительные и отрицательные числа
Изображают положительные и отрицательные числа на координатной прямой. Знакомство с понятием «модуль числа».
Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш-проигрыш, выше ниже уровня моря и т. п.).
Изображать точками координатной прямой положительные и отрицательные рациональные числа.
Характеризовать множество целых чисел, множество рациональных чисел.
Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами
Сложение и вычитание положительных и отрицательных чисел
Отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами
Формулировать и записывать с помощью букв свойства сложения и вычитания положительных и отрицательных чисел.
Умножение и деление положительных и отрицательных чисел
Отрабатываются алгоритмы умножения и деления при выполнении действий с целыми и дробными числами. Обращают обыкновенную дробь в конечную или периодическую десятичную дробь
Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений.
Решение уравнений
Преобразовывают буквенные выражения путем раскрытия скобок и приведения подобных слагаемых. Знакомятся с общими приемами решения линейных уравнений с одной переменной
Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач. Вычислять числовое значение буквенного выражения при заданных значениях букв. Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий
Координаты на плоскости
Распознают и изображают перпендикулярные и параллельные прямые. Знание порядка записи координат точек плоскости и их названий. Умение построить координатные оси, отметить точку по заданным координатам, определить координаты точки, отмеченной на координатной плоскости. Построение и чтение столбчатых диаграмм. Чтение графиков.
Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек. Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др.
Выполнять сбор информации в несложных случаях, организовывать информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ. Приводить примеры случайных событий, достоверных и невозможных событий. Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств. Приводить примеры несложных классификаций из различных областей жизни. Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера
Итоговое повторение курса математики 6 класса
Обобщение и систематизаций изученного в 6 классе
Знать материал, изученный в курсе математики за 6 класс.
Уметь применять полученные знания на практике.
Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде.
7. Учебно-методическое и материально-техническое обеспечение образовательного процесса
Программно-методическое обеспечение
Рабочая программа ориентирована на использование:
1. Приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 №1897 «Об утверждении и введении в действие Федерального государственного образовательного стандарта основного общего образования».
2. Примерные программы по учебным предметам. Математика. 5-9 классы: проект. – 3-е изд., перераб. – М.: Просвещение, 2011. – 64с. – (Стандарты второго поколения). - ISBN 978-5-09-025245-4.
3. Учебника: Математика. 6 класс: учеб. Для общеобразоват. Учреждений /Н.Я. Виленкин и др. – 30-е изд., стер. – М..: Мнемозина, 2012. – 280с.: ил.
Перечень электронных информационных источников
1. Из прошлого в настоящее математики. ООО «Видеостудия «КВАРТ».
2. Интерактивная математика. 5-9 класс. Электронное учебное пособие для основной школы. М., ООО «Дрофа», ООО «ДОС»,, 2002.
3. Математика. Практикум. 5-11 классы. Электронное учебное издание. М., ООО «Дрофа», ООО «ДОС», 2003.
4. Коллекция мультимедийных уроков Кирилла и Мефодия «Математика. 5 класс» (CD)
Перечень Интернет – ресурсов
1.Федеральный центр информационно-образовательных ресурсов (ФЦИОР) http://fcior.edu.ru
2. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru
3. «Карман для учителя математики» http://karmanform.ucoz.ru.
4. Я иду на урок математики (методические разработки): www.festival.1sepember.ru
5. Уроки – конспекты www.pedsovet.ru
Пособия для учителя
1. Математика: Учеб. для 6 кл. общеобразоват. Учреждений /Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др.; Под ред. Г.В.Дорофеева, и.Ф.Шарыгина.- 2-е изд., дораб.- М.: Просвещение, 1996.- 288с.: ил.
2. Зубарева И.И., Мордкович А.Г. Математика. 6 кл. : Учеб. для общеобразоват. учреждений. – 3-е изд., дораб. и испр. – М.: Мнемозина, 2005. – 270 с.: ил.
3. Короткова Л.М., Савинцева Н.В. Математика: Тесты: рабочая тетерадь. 6 класс. – 3-е изд. – М.: Айрис -пресс, 2008. – 96с.:ил. – (Ступени)
4.Сборник тестовых заданий для тематического и итогового контроля. Математика 6 класс/ С.А. Пушкин, И.Л. Гусева, А.О. Татур. – М.: «Интеллект-Центр», 2010. 67с.
5. Дидактические материалы по математике для 6 класса.- А.С. Чесноков, М.: Классикс Стиль, 2007. – 144с.:ил.
Дополнительная литература для обучающихся
1. Жохов В.И. Математические тренажеры. 6 кл.: Пособие для учителей и учащихся. К учебнику: Математика/ Н.Я. Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд. – М.: ООО «Издательство «РОСМЭН-ПРЕСС», 2009. – 86с.
2. Дидактические материалы по математике для 6 класса.- А.С. Чесноков, М.: Классикс Стиль, 2007. – 144с.:ил.
3. Ершова А.П., Голобородько В.В. Самостоятельные и контрольные работы для 6 класса.
8. Планируемые результаты изучения курса математики в 6 классе
Предметным результатом изучения курса является сформированность следующих умений:
Предметная область «Арифметика»
- выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками; умножение однозначных чисел, однозначного на двузначное число; деление на однозначное число, десятичной дроби с двумя знаками на однозначное число;
- переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную — в виде десятичной, проценты — в виде дроби и дробь - в виде процентов;
- выполнять арифметические действия с рациональными числами, находить значения числовых выражений, содержащих целые числа и десятичные дроби;
- округлять целые и десятичные дроби, выполнять оценку числовых выражений;
- пользоваться основными единицами длины, массы, времени, скорости, площади, объема; переводить одни единицы измерения в другие;
- решать текстовые задачи, включая задачи, связанные с отношениями, дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора;
• устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
• интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Предметная область «Геометрия»
• пользоваться геометрическим языком для описания предметов окружающего мира;
• распознавать и изображать геометрические фигуры, различать их взаимное расположение;
• распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела;
• в простейших случаях строить развертки пространственных тел;
• вычислять площади, периметры, объемы простейших геометрических фигур (тел) по формулам.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• решения несложных геометрических задач, связанных с нахождением изученных геометрических величин (используя при необходимости справочники и технические средства);
• построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Критерии и нормы оценки знаний, умений и навыков, обучающихся по математике
Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
2. Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
3. Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
3.1. Грубыми считаются ошибки:
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение читать и строить графики;
неумение пользоваться первоисточниками, учебником и справочниками;
потеря корня или сохранение постороннего корня;
отбрасывание без объяснений одного из них;
равнозначные им ошибки;
вычислительные ошибки, если они не являются опиской;
логические ошибки.
3.2. К негрубым ошибкам следует отнести:
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
неточность графика;
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей, схем, графиков.
СОГЛАСОВАНО
Протокол заседания методического объединения учителей математики и информатики МБОУ СОШ №1
им. Ляпидевского от 28.08.2014 года №1
Руководитель
________ Быстролетова Т.Д.
СОГЛАСОВАНО
Заместитель директора по УВР
________ Лизунова И.П.
Нравится материал? Поддержи автора!
Ещё документы из категории математика:
Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.
После чего кнопка «СКАЧАТЬ» станет доступной!
Кнопочки находятся чуть ниже. Спасибо!
Кнопки:
Скачать документ